These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 23202208)

  • 1. Virtual sensors for designing irrigation controllers in greenhouses.
    Sánchez JA; Rodríguez F; Guzmán JL; Arahal MR
    Sensors (Basel); 2012 Nov; 12(11):15244-66. PubMed ID: 23202208
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of a transpiration model for precise tomato (Solanum lycopersicum L.) irrigation control under various environmental conditions in greenhouse.
    Jo WJ; Shin JH
    Plant Physiol Biochem; 2021 May; 162():388-394. PubMed ID: 33740678
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Implementation of Virtual Sensors for Monitoring Temperature in Greenhouses Using CFD and Control.
    Guzmán CH; Carrera JL; Durán HA; Berumen J; Ortiz AA; Guirette OA; Arroyo A; Brizuela JA; Gómez F; Blanco A; Azcaray HR; Hernández M
    Sensors (Basel); 2018 Dec; 19(1):. PubMed ID: 30586913
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessment of Irrigation Efficiency by Coupling Remote Sensing and Ground-Based Data: Case Study of Sprinkler Irrigation of Alfalfa in the Saratovskoye Zavolgie Region of Russia.
    Zeyliger AM; Ermolaeva OS; Pchelkin VV
    Sensors (Basel); 2023 Feb; 23(5):. PubMed ID: 36904805
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Soft Sensor to Estimate the Opening of Greenhouse Vents Based on an LSTM-RNN Neural Network.
    Guesbaya M; García-Mañas F; Rodríguez F; Megherbi H
    Sensors (Basel); 2023 Jan; 23(3):. PubMed ID: 36772289
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simulation of greenhouse climate monitoring and control with wireless sensor network and event-based control.
    Pawlowski A; Guzman JL; Rodríguez F; Berenguel M; Sánchez J; Dormido S
    Sensors (Basel); 2009; 9(1):232-52. PubMed ID: 22389597
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Integrated sensor-based monitoring system for pest and disease control in greenhouses.
    Suciu L; Sumălan R; Moga D
    Commun Agric Appl Biol Sci; 2012; 77(4):489-93. PubMed ID: 23885416
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Designing Low-Cost Capacitive-Based Soil Moisture Sensor and Smart Monitoring Unit Operated by Solar Cells for Greenhouse Irrigation Management.
    Okasha AM; Ibrahim HG; Elmetwalli AH; Khedher KM; Yaseen ZM; Elsayed S
    Sensors (Basel); 2021 Aug; 21(16):. PubMed ID: 34450826
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Management of Fertigation in Horticultural Crops through Automation with Electrotensiometers: Effect on the Productivity of Water and Nutrients.
    Contreras JI; Baeza R; López JG; Cánovas G; Alonso F
    Sensors (Basel); 2020 Dec; 21(1):. PubMed ID: 33396728
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A virtual sensor for online fault detection of multitooth-tools.
    Bustillo A; Correa M; Reñones A
    Sensors (Basel); 2011; 11(3):2773-95. PubMed ID: 22163766
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biot-Granier Sensor: A Novel Strategy to Measuring Sap Flow in Trees.
    M Siqueira J; A Paço T; Machado da Silva J; C Silvestre J
    Sensors (Basel); 2020 Jun; 20(12):. PubMed ID: 32580426
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Wearable Crop Sensor Based on Nano-Graphene Oxide for Noninvasive Real-Time Monitoring of Plant Water.
    Li D; Li G; Li J; Xu S
    Membranes (Basel); 2022 Mar; 12(4):. PubMed ID: 35448328
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Combining Multi-Agent Systems and Wireless Sensor Networks for Monitoring Crop Irrigation.
    Villarrubia G; Paz JF; Iglesia DH; Bajo J
    Sensors (Basel); 2017 Aug; 17(8):. PubMed ID: 28767089
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Using Machine Learning Methods to Provision Virtual Sensors in Sensor-Cloud.
    Zhang MZ; Wang LM; Xiong SM
    Sensors (Basel); 2020 Mar; 20(7):. PubMed ID: 32224922
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Limited transpiration under high vapor pressure deficits of creeping bentgrass by application of Daconil-Action.
    Shekoofa A; Rosas-Anderson P; Carley DS; Sinclair TR; Rufty TW
    Planta; 2016 Feb; 243(2):421-7. PubMed ID: 26438219
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gravimetric phenotyping of whole plant transpiration responses to atmospheric vapour pressure deficit identifies genotypic variation in water use efficiency.
    Ryan AC; Dodd IC; Rothwell SA; Jones R; Tardieu F; Draye X; Davies WJ
    Plant Sci; 2016 Oct; 251():101-109. PubMed ID: 27593468
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of irrigation and fertilization on transpiration and hydraulic properties of Populus deltoides.
    Samuelson LJ; Stokes TA; Coleman MD
    Tree Physiol; 2007 May; 27(5):765-74. PubMed ID: 17267367
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Growth CO2 concentration modifies the transpiration response of Populus deltoides to drought and vapor pressure deficit.
    Engel VC; Griffin KL; Murthy R; Patterson L; Klimas C; Potosnak M
    Tree Physiol; 2004 Oct; 24(10):1137-45. PubMed ID: 15294760
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Virtual Sensors for Advanced Controllers in Rehabilitation Robotics.
    Mancisidor A; Zubizarreta A; Cabanes I; Portillo E; Jung JH
    Sensors (Basel); 2018 Mar; 18(3):. PubMed ID: 29510596
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Limited-transpiration response to high vapor pressure deficit in crop species.
    Sinclair TR; Devi J; Shekoofa A; Choudhary S; Sadok W; Vadez V; Riar M; Rufty T
    Plant Sci; 2017 Jul; 260():109-118. PubMed ID: 28554468
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.