BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 23202273)

  • 1. Estimation of the whole-body averaged SAR of grounded human models for plane wave exposure at respective resonance frequencies.
    Hirata A; Yanase K; Laakso I; Chan KH; Fujiwara O; Nagaoka T; Watanabe S; Conil E; Wiart J
    Phys Med Biol; 2012 Dec; 57(24):8427-42. PubMed ID: 23202273
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The relationship between specific absorption rate and temperature elevation in anatomically based human body models for plane wave exposure from 30 MHz to 6 GHz.
    Hirata A; Laakso I; Oizumi T; Hanatani R; Chan KH; Wiart J
    Phys Med Biol; 2013 Feb; 58(4):903-21. PubMed ID: 23337764
    [TBL] [Abstract][Full Text] [Related]  

  • 3. FDTD calculations of specific energy absorption rate in a seated voxel model of the human body from 10 MHz to 3 GHz.
    Findlay RP; Dimbylow PJ
    Phys Med Biol; 2006 May; 51(9):2339-52. PubMed ID: 16625046
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Measurement and validation of GHz-band whole-body average SAR in a human volunteer using reverberation chamber.
    Wang J; Suzuki T; Fujiwara O; Harima H
    Phys Med Biol; 2012 Dec; 57(23):7893-903. PubMed ID: 23151418
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SAR variation study from 300 to 5000 MHz for 15 voxel models including different postures.
    Uusitupa T; Laakso I; Ilvonen S; Nikoskinen K
    Phys Med Biol; 2010 Feb; 55(4):1157-76. PubMed ID: 20107250
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of increase in dielectric values on specific absorption rate (SAR) in eye and head tissues following 900, 1800 and 2450 MHz radio frequency (RF) exposure.
    Keshvari J; Keshvari R; Lang S
    Phys Med Biol; 2006 Mar; 51(6):1463-77. PubMed ID: 16510956
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Resonance behaviour of whole-body averaged specific energy absorption rate (SAR) in the female voxel model, NAOMI.
    Dimbylow P
    Phys Med Biol; 2005 Sep; 50(17):4053-63. PubMed ID: 16177529
    [TBL] [Abstract][Full Text] [Related]  

  • 8. FDTD calculations of SAR for child voxel models in different postures between 10 MHz and 3 GHz.
    Findlay RP; Lee AK; Dimbylow PJ
    Radiat Prot Dosimetry; 2009 Aug; 135(4):226-31. PubMed ID: 19589878
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The development of biomedical approaches and concepts in radiofrequency radiation protection.
    Czerski P
    J Microw Power Electromagn Energy; 1986; 21(1):9-23. PubMed ID: 3635631
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Calculated SAR distributions in a human voxel phantom due to the reflection of electromagnetic fields from a ground plane between 65 MHz and 2 GHz.
    Findlay RP; Dimbylow PJ
    Phys Med Biol; 2008 May; 53(9):2277-89. PubMed ID: 18401062
    [TBL] [Abstract][Full Text] [Related]  

  • 11. FDTD calculation of whole-body average SAR in adult and child models for frequencies from 30 MHz to 3 GHz.
    Wang J; Fujiwara O; Kodera S; Watanabe S
    Phys Med Biol; 2006 Sep; 51(17):4119-27. PubMed ID: 16912372
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Proportion-corrected scaled voxel models for Japanese children and their application to the numerical dosimetry of specific absorption rate for frequencies from 30 MHz to 3 GHz.
    Nagaoka T; Kunieda E; Watanabe S
    Phys Med Biol; 2008 Dec; 53(23):6695-711. PubMed ID: 18997264
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Whole-body-averaged SAR from 50 MHz to 4 GHz in the University of Florida child voxel phantoms.
    Dimbylow P; Bolch W
    Phys Med Biol; 2007 Nov; 52(22):6639-49. PubMed ID: 17975288
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Statistical multi-path exposure method for assessing the whole-body SAR in a heterogeneous human body model in a realistic environment.
    Vermeeren G; Joseph W; Martens L
    Bioelectromagnetics; 2013 Apr; 34(3):240-51. PubMed ID: 23124484
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dominant factors influencing whole-body average SAR due to far-field exposure in whole-body resonance frequency and GHz regions.
    Hirata A; Kodera S; Wang J; Fujiwara O
    Bioelectromagnetics; 2007 Sep; 28(6):484-7. PubMed ID: 17486582
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Determining the influence of Korean population variation on whole-body average SAR.
    Lee AK; Choi HD
    Phys Med Biol; 2012 May; 57(9):2709-25. PubMed ID: 22508943
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simplified segmented human models for whole body and localised SAR evaluation of 20 MHz to 6 GHz electromagnetic field exposures.
    Wu T; Shao Q; Yang L
    Radiat Prot Dosimetry; 2013 Mar; 153(3):266-72. PubMed ID: 22719042
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Variability analysis of SAR from 20 MHz to 2.4 GHz for different adult and child models using finite-difference time-domain.
    Conil E; Hadjem A; Lacroux F; Wong MF; Wiart J
    Phys Med Biol; 2008 Mar; 53(6):1511-25. PubMed ID: 18367785
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spatial averaging of fields from half-wave dipole antennas and corresponding SAR calculations in the NORMAN human voxel model between 65 MHz and 2 GHz.
    Findlay RP; Dimbylow PJ
    Phys Med Biol; 2009 Apr; 54(8):2437-47. PubMed ID: 19336844
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of electromagnetic polarization on the whole-body averaged SAR in children for plane-wave exposures.
    Hirata A; Ito N; Fujiwara O
    Phys Med Biol; 2009 Feb; 54(4):N59-65. PubMed ID: 19141885
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.