These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
98 related articles for article (PubMed ID: 23202640)
1. A spatially-based modeling framework for assessing the risks of soil-associated metals to bats. Hernout BV; Somerwill KE; Arnold KE; McClean CJ; Boxall AB Environ Pollut; 2013 Feb; 173():110-6. PubMed ID: 23202640 [TBL] [Abstract][Full Text] [Related]
2. Environmental hazard of cadmium, copper, lead and zinc in metal-contaminated soils remediated by sulfosuccinamate formulation. del Carmen Hernández-Soriano M; Peña A; Mingorance MD J Environ Monit; 2011 Oct; 13(10):2830-7. PubMed ID: 21860854 [TBL] [Abstract][Full Text] [Related]
3. Metal contamination of vineyard soils in wet subtropics (southern Brazil). Mirlean N; Roisenberg A; Chies JO Environ Pollut; 2007 Sep; 149(1):10-7. PubMed ID: 17321651 [TBL] [Abstract][Full Text] [Related]
4. Cadmium, lead, and zinc from terrestial plants in the Enyigba-Abakaliki lead and zinc mine: search for a monitoring plant species in trace element distribution. Chukwuma C Bull Environ Contam Toxicol; 1993 Nov; 51(5):665-71. PubMed ID: 8241621 [No Abstract] [Full Text] [Related]
5. Is an adjusted rhizosphere-based method valid for field assessment of metal phytoavailability? Application to non-contaminated soils. Fang J; Wen B; Shan XQ; Lin JM; Owens G Environ Pollut; 2007 Nov; 150(2):209-17. PubMed ID: 17428595 [TBL] [Abstract][Full Text] [Related]
6. Monitoring the variability of zinc and copper in surface soils from central Greece. Golia EE; Floras SA; Dimirkou A Bull Environ Contam Toxicol; 2009 Jan; 82(1):6-10. PubMed ID: 18651088 [TBL] [Abstract][Full Text] [Related]
7. Wildlife vulnerability and risk maps for combined pollutants. Lahr J; Münier B; De Lange HJ; Faber JF; Sørensen PB Sci Total Environ; 2010 Aug; 408(18):3891-8. PubMed ID: 20060570 [TBL] [Abstract][Full Text] [Related]
8. Characterizing the risk assessment of heavy metals and sampling uncertainty analysis in paddy field by geostatistics and GIS. Liu X; Wu J; Xu J Environ Pollut; 2006 May; 141(2):257-64. PubMed ID: 16271428 [TBL] [Abstract][Full Text] [Related]
9. [Environmental contamination and the lead, cadmium, zinc and copper content of wheat plants]. Annicchiarico Sebastiani L; Brunetti A; Caponigro P; Grella A; Mattei F; Melchiorri C Nuovi Ann Ig Microbiol; 1977; 28(2):67-89. PubMed ID: 80793 [No Abstract] [Full Text] [Related]
10. Heavy metals contents in agricultural topsoils in the Ebro basin (Spain). Application of the multivariate geoestatistical methods to study spatial variations. Rodríguez Martín JA; Arias ML; Grau Corbí JM Environ Pollut; 2006 Dec; 144(3):1001-12. PubMed ID: 16580763 [TBL] [Abstract][Full Text] [Related]
11. Metal concentrations in the groundwater in Birjand flood plain, Iran. Mansouri B; Salehi J; Etebari B; Moghaddam HK Bull Environ Contam Toxicol; 2012 Jul; 89(1):138-42. PubMed ID: 22484328 [TBL] [Abstract][Full Text] [Related]
12. Development of a spatial stochastic multimedia exposure model to assess population exposure at a regional scale. Caudeville J; Bonnard R; Boudet C; Denys S; Govaert G; Cicolella A Sci Total Environ; 2012 Aug; 432():297-308. PubMed ID: 22750175 [TBL] [Abstract][Full Text] [Related]
13. Using environmental concentrations of cadmium and lead to assess human exposure and dose. Hellström L; Järup L; Persson B; Axelson O J Expo Anal Environ Epidemiol; 2004 Sep; 14(5):416-23. PubMed ID: 15039792 [TBL] [Abstract][Full Text] [Related]
14. Transfer and accumulation of metals in a soil-diet-wood mouse food chain along a metal pollution gradient. Rogival D; Scheirs J; Blust R Environ Pollut; 2007 Jan; 145(2):516-28. PubMed ID: 16782248 [TBL] [Abstract][Full Text] [Related]
15. Metal accumulation in the earthworm Lumbricus rubellus. Model predictions compared to field data. Veltman K; Huijbregts MA; Vijver MG; Peijnenburg WJ; Hobbelen PH; Koolhaas JE; van Gestel CA; van Vliet PC; Hendriks AJ Environ Pollut; 2007 Mar; 146(2):428-36. PubMed ID: 16938367 [TBL] [Abstract][Full Text] [Related]
16. Assessment of metal pollution in soils from a former Havana (Cuba) solid waste open dump. Díaz Rizo O; Hernández Merlo M; Echeverría Castillo F; Arado López JO Bull Environ Contam Toxicol; 2012 Feb; 88(2):182-6. PubMed ID: 22205471 [TBL] [Abstract][Full Text] [Related]
17. Heavy metal concentrations in a soil-plant-snail food chain along a terrestrial soil pollution gradient. Notten MJ; Oosthoek AJ; Rozema J; Aerts R Environ Pollut; 2005 Nov; 138(1):178-90. PubMed ID: 16005127 [TBL] [Abstract][Full Text] [Related]
18. [Development of heavy metal composition in long-term waste water burdened soils]. Neumayr V; Aurand K; von Kunowski J; Milde G Schriftenr Ver Wasser Boden Lufthyg; 1981; 52():103-40. PubMed ID: 7052860 [No Abstract] [Full Text] [Related]
19. Influence of brown coal on limit of phytotoxicity of soils contaminated with heavy metals. Pusz A J Hazard Mater; 2007 Nov; 149(3):590-7. PubMed ID: 17693020 [TBL] [Abstract][Full Text] [Related]
20. A test of sequential extractions for determining metal speciation in sewage sludge-amended soils. Kim B; McBride MB Environ Pollut; 2006 Nov; 144(2):475-82. PubMed ID: 16603292 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]