These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 23202807)

  • 21. Comparative analysis of threshold and tessellation methods for determining protein contacts.
    Esque J; Oguey C; de Brevern AG
    J Chem Inf Model; 2011 Feb; 51(2):493-507. PubMed ID: 21226523
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Structural assessment of glycyl mutations in invariantly conserved motifs.
    Prakash T; Sandhu KS; Singh NK; Bhasin Y; Ramakrishnan C; Brahmachari SK
    Proteins; 2007 Nov; 69(3):617-32. PubMed ID: 17623846
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Comparison between long-range interactions and contact order in determining the folding rate of two-state proteins: application of long-range order to folding rate prediction.
    Gromiha MM; Selvaraj S
    J Mol Biol; 2001 Jun; 310(1):27-32. PubMed ID: 11419934
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effective inter-residue contact definitions for accurate protein fold recognition.
    Yuan C; Chen H; Kihara D
    BMC Bioinformatics; 2012 Nov; 13():292. PubMed ID: 23140471
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Impact of local and non-local interactions on thermodynamics and kinetics of protein folding.
    Abkevich VI; Gutin AM; Shakhnovich EI
    J Mol Biol; 1995 Sep; 252(4):460-71. PubMed ID: 7563065
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Optimal relationship between average conformational entropy and average energy of interactions between residues for fast protein folding].
    Galzitskaia OV; Garbuzinskiĭ SA
    Biofizika; 2006; 51(4):622-32. PubMed ID: 16909839
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Analysis of covariation in an SH3 domain sequence alignment: applications in tertiary contact prediction and the design of compensating hydrophobic core substitutions.
    Larson SM; Di Nardo AA; Davidson AR
    J Mol Biol; 2000 Oct; 303(3):433-46. PubMed ID: 11031119
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Prediction of the number of residue contacts in proteins.
    Fariselli P; Casadio R
    Proc Int Conf Intell Syst Mol Biol; 2000; 8():146-51. PubMed ID: 10977075
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Characterization of sequence variability in nucleosome core histone folds.
    Sullivan SA; Landsman D
    Proteins; 2003 Aug; 52(3):454-65. PubMed ID: 12866056
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Evolutionary conservation in protein folding kinetics.
    Plaxco KW; Larson S; Ruczinski I; Riddle DS; Thayer EC; Buchwitz B; Davidson AR; Baker D
    J Mol Biol; 2000 Apr; 298(2):303-12. PubMed ID: 10764599
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Conserved residues and the mechanism of protein folding.
    Shakhnovich E; Abkevich V; Ptitsyn O
    Nature; 1996 Jan; 379(6560):96-8. PubMed ID: 8538750
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Analysis of the differences in the folding kinetics of structurally homologous proteins based on predictions of the gross features of residue contacts.
    Ichimaru T; Kikuchi T
    Proteins; 2003 Jun; 51(4):515-30. PubMed ID: 12784211
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Residue-specific contact order and contact breadth in single-domain proteins: implications for folding as a function of chain elongation.
    Kurt N; Mounce BC; Ellison PA; Cavagnero S
    Biotechnol Prog; 2008; 24(3):570-5. PubMed ID: 18471028
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Environment-specific amino acid substitution tables: tertiary templates and prediction of protein folds.
    Overington J; Donnelly D; Johnson MS; Sali A; Blundell TL
    Protein Sci; 1992 Feb; 1(2):216-26. PubMed ID: 1304904
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Evolution and similarity evaluation of protein structures in contact map space.
    Gupta N; Mangal N; Biswas S
    Proteins; 2005 May; 59(2):196-204. PubMed ID: 15726585
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Contact pair dynamics during folding of two small proteins: chicken villin head piece and the Alzheimer protein beta-amyloid.
    Mukherjee A; Bagchi B
    J Chem Phys; 2004 Jan; 120(3):1602-12. PubMed ID: 15268287
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Identifying a folding nucleus for the lysozyme/alpha-lactalbumin family from sequence conservation clusters.
    Ting KL; Jernigan RL
    J Mol Evol; 2002 Apr; 54(4):425-36. PubMed ID: 11956682
    [TBL] [Abstract][Full Text] [Related]  

  • 38. PROFcon: novel prediction of long-range contacts.
    Punta M; Rost B
    Bioinformatics; 2005 Jul; 21(13):2960-8. PubMed ID: 15890748
    [TBL] [Abstract][Full Text] [Related]  

  • 39. CoC: a database of universally conserved residues in protein folds.
    Donald JE; Hubner IA; Rotemberg VM; Shakhnovich EI; Mirny LA
    Bioinformatics; 2005 May; 21(10):2539-40. PubMed ID: 15746286
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Hot regions in protein--protein interactions: the organization and contribution of structurally conserved hot spot residues.
    Keskin O; Ma B; Nussinov R
    J Mol Biol; 2005 Feb; 345(5):1281-94. PubMed ID: 15644221
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.