BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 23203134)

  • 1. Errors in the calculation of (27)Al nuclear magnetic resonance chemical shifts.
    Wang X; Wang C; Zhao H
    Int J Mol Sci; 2012 Nov; 13(11):15420-46. PubMed ID: 23203134
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Aluminium siting in the ZSM-5 framework by combination of high resolution 27Al NMR and DFT/MM calculations.
    Sklenak S; Dedecek J; Li C; Wichterlová B; Gábová V; Sierka M; Sauer J
    Phys Chem Chem Phys; 2009 Feb; 11(8):1237-47. PubMed ID: 19209368
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nuclear magnetic resonance shielding constants and chemical shifts in linear 199Hg compounds: a comparison of three relativistic computational methods.
    Arcisauskaite V; Melo JI; Hemmingsen L; Sauer SP
    J Chem Phys; 2011 Jul; 135(4):044306. PubMed ID: 21806118
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computational studies of 13C NMR chemical shifts of saccharides.
    Taubert S; Konschin H; Sundholm D
    Phys Chem Chem Phys; 2005 Jul; 7(13):2561-9. PubMed ID: 16189565
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Aluminum binding to phosphatidylcholine lipid bilayer membranes: 27Al and 31P NMR spectroscopic studies.
    MacKinnon N; Crowell KJ; Udit AK; Macdonald PM
    Chem Phys Lipids; 2004 Nov; 132(1):23-36. PubMed ID: 15530445
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessment of the accuracy of theoretical methods for calculating (27)Al nuclear magnetic resonance shielding tensors of aquated aluminum species.
    Qian Z; Feng H; He L; Yang W; Bi S
    J Phys Chem A; 2009 Apr; 113(17):5138-43. PubMed ID: 19344113
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure and NMR assignment in calcined and as-synthesized forms of AlPO-14: a combined study by first-principles calculations and high-resolution 27Al-31P MAS NMR correlation.
    Ashbrook SE; Cutajar M; Pickard CJ; Walton RI; Wimperis S
    Phys Chem Chem Phys; 2008 Oct; 10(37):5754-64. PubMed ID: 18956112
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficiently Computing NMR
    Palivec V; Pohl R; Kaminský J; Martinez-Seara H
    J Chem Theory Comput; 2022 Jul; 18(7):4373-4386. PubMed ID: 35687789
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A 27Al MAS, MQMAS and off-resonance nutation NMR study of aluminium containing silica-based sol-gel materials.
    Peeters MP; Kentgens AP
    Solid State Nucl Magn Reson; 1997 Dec; 9(2-4):203-17. PubMed ID: 9477450
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Solid-state NMR spectra and long intradimer bonds in the pi-[TCNE]22- dianion.
    Strohmeier M; Barich DH; Grant DM; Miller JS; Pugmire RJ; Simons J
    J Phys Chem A; 2006 Jun; 110(25):7962-9. PubMed ID: 16789786
    [TBL] [Abstract][Full Text] [Related]  

  • 11. General Protocol for the Accurate Prediction of Molecular
    Gao P; Zhang J; Peng Q; Zhang J; Glezakou VA
    J Chem Inf Model; 2020 Aug; 60(8):3746-3754. PubMed ID: 32602715
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A relativistic DFT methodology for calculating the structures and NMR chemical shifts of octahedral platinum and iridium complexes.
    Vícha J; Patzschke M; Marek R
    Phys Chem Chem Phys; 2013 May; 15(20):7740-54. PubMed ID: 23598437
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Theoretical 49Ti NMR chemical shifts.
    Koch R; Bruhn T
    J Mol Model; 2006 Jul; 12(5):723-9. PubMed ID: 16570140
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Experimental and quantum-chemical studies of 1H, 13C and 15N NMR coordination shifts in Pd(II) and Pt(II) chloride complexes with quinoline, isoquinoline, and 2,2'-biquinoline.
    Pazderski L; Tousek J; Sitkowski J; Kozerski L; Szłyk E
    Magn Reson Chem; 2007 Dec; 45(12):1059-71. PubMed ID: 18044805
    [TBL] [Abstract][Full Text] [Related]  

  • 15. NMR and molecular modeling in environmental chemistry: prediction of 13C chemical shifts in selected C10-chloroterpenes employing DFT/GIAO theory.
    Tuppurainen K; Ruuskanen J
    Chemosphere; 2003 Feb; 50(5):603-9. PubMed ID: 12685736
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Correlations between 27Al magic-angle spinning nuclear magnetic resonance spectra and the coordination geometry of framework aluminates.
    Weller MT; Brenchley ME; Apperley DC; Davies NA
    Solid State Nucl Magn Reson; 1994 Apr; 3(2):103-6. PubMed ID: 7834310
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The determination of the average 27Al-31P distance in aluminophosphate molecular sieves with SEDOR NMR.
    van Eck ER; Veeman WS
    Solid State Nucl Magn Reson; 1992 Feb; 1(1):1-4. PubMed ID: 1365708
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Geometric dependence of the B3LYP-predicted magnetic shieldings and chemical shifts.
    Zhang Y; Wu A; Xu X; Yan Y
    J Phys Chem A; 2007 Sep; 111(38):9431-7. PubMed ID: 17696331
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Theoretical and experimental NMR study of protopine hydrochloride isomers.
    Tousek J; Malináková K; Dostál J; Marek R
    Magn Reson Chem; 2005 Jul; 43(7):578-81. PubMed ID: 15883981
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Conformational characterization of lanthanide(III)-DOTA complexes by ab initio investigation in vacuo and in aqueous solution.
    Cosentino U; Villa A; Pitea D; Moro G; Barone V; Maiocchi A
    J Am Chem Soc; 2002 May; 124(17):4901-9. PubMed ID: 11971741
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.