These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
152 related articles for article (PubMed ID: 23203653)
1. Predicting quality of life after breast cancer surgery using ANN-based models: performance comparison with MR. Tsai JT; Hou MF; Chen YM; Wan TT; Kao HY; Shi HY Support Care Cancer; 2013 May; 21(5):1341-50. PubMed ID: 23203653 [TBL] [Abstract][Full Text] [Related]
2. Predicting two-year quality of life after breast cancer surgery using artificial neural network and linear regression models. Shi HY; Tsai JT; Chen YM; Culbertson R; Chang HT; Hou MF Breast Cancer Res Treat; 2012 Aug; 135(1):221-9. PubMed ID: 22836876 [TBL] [Abstract][Full Text] [Related]
3. Comparisons of prediction models of quality of life after laparoscopic cholecystectomy: a longitudinal prospective study. Shi HY; Lee HH; Tsai JT; Ho WH; Chen CF; Lee KT; Chiu CC PLoS One; 2012; 7(12):e51285. PubMed ID: 23284677 [TBL] [Abstract][Full Text] [Related]
4. Application of artificial neural network (ANN-MLP) for the prediction of fouling resistance in heat exchanger to MgO-water and CuO-water nanofluids. Benyekhlef A; Mohammedi B; Hassani D; Hanini S Water Sci Technol; 2021 Aug; 84(3):538-551. PubMed ID: 34388118 [TBL] [Abstract][Full Text] [Related]
5. Prediction of force measurements of a microbend sensor based on an artificial neural network. Efendioglu HS; Yildirim T; Fidanboylu K Sensors (Basel); 2009; 9(9):7167-76. PubMed ID: 22399991 [TBL] [Abstract][Full Text] [Related]
6. Experimental analysis and parameter optimization on the reduction of NOx from diesel engine using RSM and ANN Model. Chenniappan M; Suresh R; Rajoo B; Nachimuthu S; Rajaram RG; Malaichamy V Environ Sci Pollut Res Int; 2022 Sep; 29(44):66068-66084. PubMed ID: 35488989 [TBL] [Abstract][Full Text] [Related]
7. Comparison of Models for Predicting Quality of Life After Surgical Resection of Hepatocellular Carcinoma: a Prospective Study. Chiu CC; Lee KT; Lee HH; Wang JJ; Sun DP; Huang CC; Shi HY J Gastrointest Surg; 2018 Oct; 22(10):1724-1731. PubMed ID: 29916106 [TBL] [Abstract][Full Text] [Related]
8. Comparisons of prediction models of myofascial pain control after dry needling: a prospective study. Huang YT; Neoh CA; Lin SY; Shi HY Evid Based Complement Alternat Med; 2013; 2013():478202. PubMed ID: 23853659 [TBL] [Abstract][Full Text] [Related]
9. The Use of Artificial Neural Networks to Predict the Physicochemical Characteristics of Water Quality in Three District Municipalities, Eastern Cape Province, South Africa. Setshedi KJ; Mutingwende N; Ngqwala NP Int J Environ Res Public Health; 2021 May; 18(10):. PubMed ID: 34069195 [TBL] [Abstract][Full Text] [Related]
10. Cloud-Based Service Information System for Evaluating Quality of Life after Breast Cancer Surgery. Kao HY; Wu WH; Liang TY; Lee KT; Hou MF; Shi HY PLoS One; 2015; 10(9):e0139252. PubMed ID: 26422018 [TBL] [Abstract][Full Text] [Related]
11. Artificial neural network models to predict nodal status in clinically node-negative breast cancer. Dihge L; Ohlsson M; Edén P; Bendahl PO; Rydén L BMC Cancer; 2019 Jun; 19(1):610. PubMed ID: 31226956 [TBL] [Abstract][Full Text] [Related]
12. Predictive model for 5-year mortality after breast cancer surgery in Taiwan residents. Huang SH; Loh JK; Tsai JT; Houg MF; Shi HY Chin J Cancer; 2017 Feb; 36(1):23. PubMed ID: 28241793 [TBL] [Abstract][Full Text] [Related]
13. Predictive Models of Phytosterol Degradation in Rapeseeds Stored in Bulk Based on Artificial Neural Networks and Response Surface Regression. Wawrzyniak J; Rudzińska M; Gawrysiak-Witulska M; Przybył K Molecules; 2022 Apr; 27(8):. PubMed ID: 35458643 [TBL] [Abstract][Full Text] [Related]
14. Predicting Modified Fournier Index by Using Artificial Neural Network in Central Europe. Harsányi E; Bashir B; Alsilibe F; Moazzam MFU; Ratonyi T; Alsalman A; Széles A; Nyeki A; Takács I; Mohammed S Int J Environ Res Public Health; 2022 Aug; 19(17):. PubMed ID: 36078383 [TBL] [Abstract][Full Text] [Related]
15. Modeling oxygen and organic matter concentration in the intensive rainbow trout (Oncorhynchus mykiss) rearing system. Galezan FH; Bayati MR; Safari O; Rohani A Environ Monit Assess; 2020 Mar; 192(4):223. PubMed ID: 32152844 [TBL] [Abstract][Full Text] [Related]
16. Time series prediction of under-five mortality rates for Nigeria: comparative analysis of artificial neural networks, Holt-Winters exponential smoothing and autoregressive integrated moving average models. Adeyinka DA; Muhajarine N BMC Med Res Methodol; 2020 Dec; 20(1):292. PubMed ID: 33267817 [TBL] [Abstract][Full Text] [Related]
17. Using radial basis artificial neural networks to predict radiation hazard indices in geological materials. Erzin S Environ Monit Assess; 2024 Feb; 196(3):315. PubMed ID: 38416264 [TBL] [Abstract][Full Text] [Related]
18. Multiple forecasting approach: a prediction of CO2 emission from the paddy crop in India. Singh PK; Pandey AK; Ahuja S; Kiran R Environ Sci Pollut Res Int; 2022 Apr; 29(17):25461-25472. PubMed ID: 34841483 [TBL] [Abstract][Full Text] [Related]
19. Modeling Niedbała G; Niazian M; Sabbatini P Front Plant Sci; 2021; 12():695110. PubMed ID: 34413865 [TBL] [Abstract][Full Text] [Related]
20. A COVID-19 Pandemic Artificial Intelligence-Based System With Deep Learning Forecasting and Automatic Statistical Data Acquisition: Development and Implementation Study. Yu CS; Chang SS; Chang TH; Wu JL; Lin YJ; Chien HF; Chen RJ J Med Internet Res; 2021 May; 23(5):e27806. PubMed ID: 33900932 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]