BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 23203870)

  • 1. EENdb: a database and knowledge base of ZFNs and TALENs for endonuclease engineering.
    Xiao A; Wu Y; Yang Z; Hu Y; Wang W; Zhang Y; Kong L; Gao G; Zhu Z; Lin S; Zhang B
    Nucleic Acids Res; 2013 Jan; 41(Database issue):D415-22. PubMed ID: 23203870
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [TALE nuclease engineering and targeted genome modification].
    Shen Y; Xiao A; Huang P; Wang WY; Zhu ZY; Zhang B
    Yi Chuan; 2013 Apr; 35(4):395-409. PubMed ID: 23659930
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Origins of Programmable Nucleases for Genome Engineering.
    Chandrasegaran S; Carroll D
    J Mol Biol; 2016 Feb; 428(5 Pt B):963-89. PubMed ID: 26506267
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparing zinc finger nucleases and transcription activator-like effector nucleases for gene targeting in Drosophila.
    Beumer KJ; Trautman JK; Christian M; Dahlem TJ; Lake CM; Hawley RS; Grunwald DJ; Voytas DF; Carroll D
    G3 (Bethesda); 2013 Oct; 3(10):1717-25. PubMed ID: 23979928
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The comparison of ZFNs, TALENs, and SpCas9 by GUIDE-seq in HPV-targeted gene therapy.
    Cui Z; Liu H; Zhang H; Huang Z; Tian R; Li L; Fan W; Chen Y; Chen L; Zhang S; Das BC; Severinov K; Hitzeroth II; Debata PR; Jin Z; Liu J; Huang Z; Xie W; Xie H; Lang B; Ma J; Weng H; Tian X; Hu Z
    Mol Ther Nucleic Acids; 2021 Dec; 26():1466-1478. PubMed ID: 34938601
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel TALE nuclease scaffold enables high genome editing activity in combination with low toxicity.
    Mussolino C; Morbitzer R; Lütge F; Dannemann N; Lahaye T; Cathomen T
    Nucleic Acids Res; 2011 Nov; 39(21):9283-93. PubMed ID: 21813459
    [TBL] [Abstract][Full Text] [Related]  

  • 7. TALE-PvuII fusion proteins--novel tools for gene targeting.
    Yanik M; Alzubi J; Lahaye T; Cathomen T; Pingoud A; Wende W
    PLoS One; 2013; 8(12):e82539. PubMed ID: 24349308
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Creating a monomeric endonuclease TALE-I-SceI with high specificity and low genotoxicity in human cells.
    Lin J; Chen H; Luo L; Lai Y; Xie W; Kee K
    Nucleic Acids Res; 2015 Jan; 43(2):1112-22. PubMed ID: 25541197
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Site- and strand-specific nicking of DNA by fusion proteins derived from MutH and I-SceI or TALE repeats.
    Gabsalilow L; Schierling B; Friedhoff P; Pingoud A; Wende W
    Nucleic Acids Res; 2013 Apr; 41(7):e83. PubMed ID: 23408850
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Targeted mutagenesis in sea urchin embryos using TALENs.
    Hosoi S; Sakuma T; Sakamoto N; Yamamoto T
    Dev Growth Differ; 2014 Jan; 56(1):92-7. PubMed ID: 24262038
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recent progress in genome engineering techniques in the silkworm, Bombyx mori.
    Daimon T; Kiuchi T; Takasu Y
    Dev Growth Differ; 2014 Jan; 56(1):14-25. PubMed ID: 24175911
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improved somatic mutagenesis in zebrafish using transcription activator-like effector nucleases (TALENs).
    Moore FE; Reyon D; Sander JD; Martinez SA; Blackburn JS; Khayter C; Ramirez CL; Joung JK; Langenau DM
    PLoS One; 2012; 7(5):e37877. PubMed ID: 22655075
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An efficient strategy for TALEN-mediated genome engineering in Drosophila.
    Katsuyama T; Akmammedov A; Seimiya M; Hess SC; Sievers C; Paro R
    Nucleic Acids Res; 2013 Sep; 41(17):e163. PubMed ID: 23877243
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of synthetic selfish elements based on modular nucleases in Drosophila melanogaster.
    Simoni A; Siniscalchi C; Chan YS; Huen DS; Russell S; Windbichler N; Crisanti A
    Nucleic Acids Res; 2014 Jun; 42(11):7461-72. PubMed ID: 24803674
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluating the mutagenic activity of targeted endonucleases containing a Sharkey FokI cleavage domain variant in zebrafish.
    Pillay LM; Selland LG; Fleisch VC; Leighton PL; Cheng CS; Famulski JK; Ritzel RG; March LD; Wang H; Allison WT; Waskiewicz AJ
    Zebrafish; 2013 Sep; 10(3):353-64. PubMed ID: 23781947
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design, evaluation, and screening methods for efficient targeted mutagenesis with transcription activator-like effector nucleases in medaka.
    Ansai S; Inohaya K; Yoshiura Y; Schartl M; Uemura N; Takahashi R; Kinoshita M
    Dev Growth Differ; 2014 Jan; 56(1):98-107. PubMed ID: 24286287
    [TBL] [Abstract][Full Text] [Related]  

  • 17. LAHEDES: the LAGLIDADG homing endonuclease database and engineering server.
    Taylor GK; Petrucci LH; Lambert AR; Baxter SK; Jarjour J; Stoddard BL
    Nucleic Acids Res; 2012 Jul; 40(Web Server issue):W110-6. PubMed ID: 22570419
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Creating designed zinc-finger nucleases with minimal cytotoxicity.
    Ramalingam S; Kandavelou K; Rajenderan R; Chandrasegaran S
    J Mol Biol; 2011 Jan; 405(3):630-41. PubMed ID: 21094162
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficient targeted mutagenesis in medaka using custom-designed transcription activator-like effector nucleases.
    Ansai S; Sakuma T; Yamamoto T; Ariga H; Uemura N; Takahashi R; Kinoshita M
    Genetics; 2013 Mar; 193(3):739-49. PubMed ID: 23288935
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nuclease-mediated genome editing: At the front-line of functional genomics technology.
    Sakuma T; Woltjen K
    Dev Growth Differ; 2014 Jan; 56(1):2-13. PubMed ID: 24387662
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.