BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

488 related articles for article (PubMed ID: 23203878)

  • 1. D²P²: database of disordered protein predictions.
    Oates ME; Romero P; Ishida T; Ghalwash M; Mizianty MJ; Xue B; Dosztányi Z; Uversky VN; Obradovic Z; Kurgan L; Dunker AK; Gough J
    Nucleic Acids Res; 2013 Jan; 41(Database issue):D508-16. PubMed ID: 23203878
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MobiDB: a comprehensive database of intrinsic protein disorder annotations.
    Di Domenico T; Walsh I; Martin AJ; Tosatto SC
    Bioinformatics; 2012 Aug; 28(15):2080-1. PubMed ID: 22661649
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MobiDB 2.0: an improved database of intrinsically disordered and mobile proteins.
    Potenza E; Di Domenico T; Walsh I; Tosatto SC
    Nucleic Acids Res; 2015 Jan; 43(Database issue):D315-20. PubMed ID: 25361972
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SUPERFAMILY: HMMs representing all proteins of known structure. SCOP sequence searches, alignments and genome assignments.
    Gough J; Chothia C
    Nucleic Acids Res; 2002 Jan; 30(1):268-72. PubMed ID: 11752312
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intrinsic disorder in the Protein Data Bank.
    Le Gall T; Romero PR; Cortese MS; Uversky VN; Dunker AK
    J Biomol Struct Dyn; 2007 Feb; 24(4):325-42. PubMed ID: 17206849
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The SUPERFAMILY database in 2007: families and functions.
    Wilson D; Madera M; Vogel C; Chothia C; Gough J
    Nucleic Acids Res; 2007 Jan; 35(Database issue):D308-13. PubMed ID: 17098927
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SCOP database in 2002: refinements accommodate structural genomics.
    Lo Conte L; Brenner SE; Hubbard TJ; Chothia C; Murzin AG
    Nucleic Acids Res; 2002 Jan; 30(1):264-7. PubMed ID: 11752311
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 3D-GENOMICS: a database to compare structural and functional annotations of proteins between sequenced genomes.
    Fleming K; Müller A; MacCallum RM; Sternberg MJ
    Nucleic Acids Res; 2004 Jan; 32(Database issue):D245-50. PubMed ID: 14681404
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The GTOP database in 2009: updated content and novel features to expand and deepen insights into protein structures and functions.
    Fukuchi S; Homma K; Sakamoto S; Sugawara H; Tateno Y; Gojobori T; Nishikawa K
    Nucleic Acids Res; 2009 Jan; 37(Database issue):D333-7. PubMed ID: 18987007
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The SUPERFAMILY 1.75 database in 2014: a doubling of data.
    Oates ME; Stahlhacke J; Vavoulis DV; Smithers B; Rackham OJ; Sardar AJ; Zaucha J; Thurlby N; Fang H; Gough J
    Nucleic Acids Res; 2015 Jan; 43(Database issue):D227-33. PubMed ID: 25414345
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genome3D: a UK collaborative project to annotate genomic sequences with predicted 3D structures based on SCOP and CATH domains.
    Lewis TE; Sillitoe I; Andreeva A; Blundell TL; Buchan DW; Chothia C; Cuff A; Dana JM; Filippis I; Gough J; Hunter S; Jones DT; Kelley LA; Kleywegt GJ; Minneci F; Mitchell A; Murzin AG; Ochoa-Montaño B; Rackham OJ; Smith J; Sternberg MJ; Velankar S; Yeats C; Orengo C
    Nucleic Acids Res; 2013 Jan; 41(Database issue):D499-507. PubMed ID: 23203986
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DescribePROT: database of amino acid-level protein structure and function predictions.
    Zhao B; Katuwawala A; Oldfield CJ; Dunker AK; Faraggi E; Gsponer J; Kloczkowski A; Malhis N; Mirdita M; Obradovic Z; Söding J; Steinegger M; Zhou Y; Kurgan L
    Nucleic Acids Res; 2021 Jan; 49(D1):D298-D308. PubMed ID: 33119734
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SUPFAM--a database of potential protein superfamily relationships derived by comparing sequence-based and structure-based families: implications for structural genomics and function annotation in genomes.
    Pandit SB; Gosar D; Abhiman S; Sujatha S; Dixit SS; Mhatre NS; Sowdhamini R; Srinivasan N
    Nucleic Acids Res; 2002 Jan; 30(1):289-93. PubMed ID: 11752317
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The SUPERFAMILY database in 2004: additions and improvements.
    Madera M; Vogel C; Kummerfeld SK; Chothia C; Gough J
    Nucleic Acids Res; 2004 Jan; 32(Database issue):D235-9. PubMed ID: 14681402
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genome-scale prediction of proteins with long intrinsically disordered regions.
    Peng Z; Mizianty MJ; Kurgan L
    Proteins; 2014 Jan; 82(1):145-58. PubMed ID: 23798504
    [TBL] [Abstract][Full Text] [Related]  

  • 16. IUPred2A: context-dependent prediction of protein disorder as a function of redox state and protein binding.
    Mészáros B; Erdos G; Dosztányi Z
    Nucleic Acids Res; 2018 Jul; 46(W1):W329-W337. PubMed ID: 29860432
    [TBL] [Abstract][Full Text] [Related]  

  • 17. ESpritz: accurate and fast prediction of protein disorder.
    Walsh I; Martin AJ; Di Domenico T; Tosatto SC
    Bioinformatics; 2012 Feb; 28(4):503-9. PubMed ID: 22190692
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SCOPExplorer: a tool for browsing and analyzing structural classification of proteins (SCOP) data.
    Ahn GT; Kim JH; Hwang EY; Lee MJ; Han IS
    Mol Cells; 2004 Apr; 17(2):360-4. PubMed ID: 15179055
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative Assessment of Intrinsic Disorder Predictions with a Focus on Protein and Nucleic Acid-Binding Proteins.
    Katuwawala A; Kurgan L
    Biomolecules; 2020 Dec; 10(12):. PubMed ID: 33291838
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Abundance of intrinsic disorder in protein associated with cardiovascular disease.
    Cheng Y; LeGall T; Oldfield CJ; Dunker AK; Uversky VN
    Biochemistry; 2006 Sep; 45(35):10448-60. PubMed ID: 16939197
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.