These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

345 related articles for article (PubMed ID: 23203885)

  • 21. The native cistrome and sequence motif families of the maize ear.
    Savadel SD; Hartwig T; Turpin ZM; Vera DL; Lung PY; Sui X; Blank M; Frommer WB; Dennis JH; Zhang J; Bass HW
    PLoS Genet; 2021 Aug; 17(8):e1009689. PubMed ID: 34383745
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Improving analysis of transcription factor binding sites within ChIP-Seq data based on topological motif enrichment.
    Worsley Hunt R; Mathelier A; Del Peso L; Wasserman WW
    BMC Genomics; 2014 Jun; 15(1):472. PubMed ID: 24927817
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cell-type and transcription factor specific enrichment of transcriptional cofactor motifs in ENCODE ChIP-seq data.
    Goi C; Little P; Xie C
    BMC Genomics; 2013; 14 Suppl 5(Suppl 5):S2. PubMed ID: 24564528
    [TBL] [Abstract][Full Text] [Related]  

  • 24. TICA: Transcriptional Interaction and Coregulation Analyzer.
    Perna S; Pinoli P; Ceri S; Wong L
    Genomics Proteomics Bioinformatics; 2018 Oct; 16(5):342-353. PubMed ID: 30578913
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The patterns of histone modifications in the vicinity of transcription factor binding sites in human lymphoblastoid cell lines.
    Nie Y; Liu H; Sun X
    PLoS One; 2013; 8(3):e60002. PubMed ID: 23527292
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Systematic discovery and characterization of regulatory motifs in ENCODE TF binding experiments.
    Kheradpour P; Kellis M
    Nucleic Acids Res; 2014 Mar; 42(5):2976-87. PubMed ID: 24335146
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Integration of 198 ChIP-seq datasets reveals human cis-regulatory regions.
    Bolouri H; Ruzzo WL
    J Comput Biol; 2012 Sep; 19(9):989-97. PubMed ID: 22897152
    [TBL] [Abstract][Full Text] [Related]  

  • 28. FisherMP: fully parallel algorithm for detecting combinatorial motifs from large ChIP-seq datasets.
    Zhang S; Liang Y; Wang X; Su Z; Chen Y
    DNA Res; 2019 Jun; 26(3):231-242. PubMed ID: 30957858
    [TBL] [Abstract][Full Text] [Related]  

  • 29. YeTFaSCo: a database of evaluated yeast transcription factor sequence specificities.
    de Boer CG; Hughes TR
    Nucleic Acids Res; 2012 Jan; 40(Database issue):D169-79. PubMed ID: 22102575
    [TBL] [Abstract][Full Text] [Related]  

  • 30. COPS: detecting co-occurrence and spatial arrangement of transcription factor binding motifs in genome-wide datasets.
    Ha N; Polychronidou M; Lohmann I
    PLoS One; 2012; 7(12):e52055. PubMed ID: 23272209
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Constrained transcription factor spacing is prevalent and important for transcriptional control of mouse blood cells.
    Ng FS; Schütte J; Ruau D; Diamanti E; Hannah R; Kinston SJ; Göttgens B
    Nucleic Acids Res; 2014 Dec; 42(22):13513-24. PubMed ID: 25428352
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Differential motif enrichment analysis of paired ChIP-seq experiments.
    Lesluyes T; Johnson J; Machanick P; Bailey TL
    BMC Genomics; 2014 Sep; 15(1):752. PubMed ID: 25179504
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Analysis of Co-Associated Transcription Factors via Ordered Adjacency Differences on Motif Distribution.
    Pan G; Tang J; Guo F
    Sci Rep; 2017 Feb; 7():43597. PubMed ID: 28240320
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Role of chromatin and transcriptional co-regulators in mediating p63-genome interactions in keratinocytes.
    Sethi I; Sinha S; Buck MJ
    BMC Genomics; 2014 Nov; 15(1):1042. PubMed ID: 25433490
    [TBL] [Abstract][Full Text] [Related]  

  • 35. SIOMICS: a novel approach for systematic identification of motifs in ChIP-seq data.
    Ding J; Hu H; Li X
    Nucleic Acids Res; 2014 Mar; 42(5):e35. PubMed ID: 24322294
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Occupancy maps of 208 chromatin-associated proteins in one human cell type.
    Partridge EC; Chhetri SB; Prokop JW; Ramaker RC; Jansen CS; Goh ST; Mackiewicz M; Newberry KM; Brandsmeier LA; Meadows SK; Messer CL; Hardigan AA; Coppola CJ; Dean EC; Jiang S; Savic D; Mortazavi A; Wold BJ; Myers RM; Mendenhall EM
    Nature; 2020 Jul; 583(7818):720-728. PubMed ID: 32728244
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Distinct features of lamin A-interacting chromatin domains mapped by ChIP-sequencing from sonicated or micrococcal nuclease-digested chromatin.
    Lund EG; Duband-Goulet I; Oldenburg A; Buendia B; Collas P
    Nucleus; 2015; 6(1):30-9. PubMed ID: 25602132
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Contribution of nucleosome binding preferences and co-occurring DNA sequences to transcription factor binding.
    He X; Chatterjee R; John S; Bravo H; Sathyanarayana BK; Biddie SC; FitzGerald PC; Stamatoyannopoulos JA; Hager GL; Vinson C
    BMC Genomics; 2013 Jun; 14():428. PubMed ID: 23805837
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Subtracting the sequence bias from partially digested MNase-seq data reveals a general contribution of TFIIS to nucleosome positioning.
    Gutiérrez G; Millán-Zambrano G; Medina DA; Jordán-Pla A; Pérez-Ortín JE; Peñate X; Chávez S
    Epigenetics Chromatin; 2017 Dec; 10(1):58. PubMed ID: 29212533
    [TBL] [Abstract][Full Text] [Related]  

  • 40. ChIPBase v2.0: decoding transcriptional regulatory networks of non-coding RNAs and protein-coding genes from ChIP-seq data.
    Zhou KR; Liu S; Sun WJ; Zheng LL; Zhou H; Yang JH; Qu LH
    Nucleic Acids Res; 2017 Jan; 45(D1):D43-D50. PubMed ID: 27924033
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.