These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 23204279)

  • 1. Dynamic 3-D visualization of vocal tract shaping during speech.
    Zhu Y; Kim YC; Proctor MI; Narayanan SS; Nayak KS
    IEEE Trans Med Imaging; 2013 May; 32(5):838-48. PubMed ID: 23204279
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 3D dynamic MRI of the vocal tract during natural speech.
    Lim Y; Zhu Y; Lingala SG; Byrd D; Narayanan S; Nayak KS
    Magn Reson Med; 2019 Mar; 81(3):1511-1520. PubMed ID: 30390319
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improved imaging of lingual articulation using real-time multislice MRI.
    Kim YC; Proctor MI; Narayanan SS; Nayak KS
    J Magn Reson Imaging; 2012 Apr; 35(4):943-8. PubMed ID: 22127935
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Human vocal tract analysis by in vivo 3D MRI during phonation: a complete system for imaging, quantitative modeling, and speech synthesis.
    Wismueller A; Behrends J; Hoole P; Leinsinger GL; Reiser MF; Westesson PL
    Med Image Comput Comput Assist Interv; 2008; 11(Pt 2):306-12. PubMed ID: 18982619
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A fast and flexible MRI system for the study of dynamic vocal tract shaping.
    Lingala SG; Zhu Y; Kim YC; Toutios A; Narayanan S; Nayak KS
    Magn Reson Med; 2017 Jan; 77(1):112-125. PubMed ID: 26778178
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stroboscopic articulography using fast magnetic resonance imaging.
    Mathiak K; Klose U; Ackermann H; Hertrich I; Kincses WE; Grodd W
    Int J Lang Commun Disord; 2000; 35(3):419-25. PubMed ID: 10963023
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-frame-rate full-vocal-tract 3D dynamic speech imaging.
    Fu M; Barlaz MS; Holtrop JL; Perry JL; Kuehn DP; Shosted RK; Liang ZP; Sutton BP
    Magn Reson Med; 2017 Apr; 77(4):1619-1629. PubMed ID: 27099178
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-Resolution, Non-Invasive Imaging of Upper Vocal Tract Articulators Compatible with Human Brain Recordings.
    Bouchard KE; Conant DF; Anumanchipalli GK; Dichter B; Chaisanguanthum KS; Johnson K; Chang EF
    PLoS One; 2016; 11(3):e0151327. PubMed ID: 27019106
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Morphologic differences in the vocal tract resonance cavities of voice professionals: an MRI-based study.
    Rua Ventura SM; Freitas DR; Ramos IM; Tavares JM
    J Voice; 2013 Mar; 27(2):132-40. PubMed ID: 23406840
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inter-speaker speech variability assessment using statistical deformable models from 3.0 tesla magnetic resonance images.
    Vasconcelos MJ; Ventura SM; Freitas DR; Tavares JM
    Proc Inst Mech Eng H; 2012 Mar; 226(3):185-96. PubMed ID: 22558833
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A new method for the study of velopharyngeal function using gated magnetic resonance imaging.
    Kane AA; Butman JA; Mullick R; Skopec M; Choyke P
    Plast Reconstr Surg; 2002 Feb; 109(2):472-81. PubMed ID: 11818823
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phonovibrography: mapping high-speed movies of vocal fold vibrations into 2-D diagrams for visualizing and analyzing the underlying laryngeal dynamics.
    Lohscheller J; Eysholdt U; Toy H; Dollinger M
    IEEE Trans Med Imaging; 2008 Mar; 27(3):300-9. PubMed ID: 18334426
    [TBL] [Abstract][Full Text] [Related]  

  • 13. One-second MRI of a three-dimensional vocal tract to measure dynamic articulator modifications.
    Burdumy M; Traser L; Burk F; Richter B; Echternach M; Korvink JG; Hennig J; Zaitsev M
    J Magn Reson Imaging; 2017 Jul; 46(1):94-101. PubMed ID: 27943448
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Automatic segmentation of vocal tract articulators in real-time magnetic resonance imaging.
    Ribeiro V; Isaieva K; Leclere J; Felblinger J; Vuissoz PA; Laprie Y
    Comput Methods Programs Biomed; 2024 Jan; 243():107907. PubMed ID: 37976615
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [3D visualization and analysis of vocal fold dynamics].
    Bohr C; Döllinger M; Kniesburges S; Traxdorf M
    HNO; 2016 Apr; 64(4):254-61. PubMed ID: 26842549
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Fast Semiautomatic Algorithm for Centerline-Based Vocal Tract Segmentation.
    Poznyakovskiy AA; Mainka A; Platzek I; Mürbe D
    Biomed Res Int; 2015; 2015():906356. PubMed ID: 26557710
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Region segmentation in the frequency domain applied to upper airway real-time magnetic resonance images.
    Bresch E; Narayanan S
    IEEE Trans Med Imaging; 2009 Mar; 28(3):323-38. PubMed ID: 19244005
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interspeaker variability in hard palate morphology and vowel production.
    Lammert A; Proctor M; Narayanan S
    J Speech Lang Hear Res; 2013 Dec; 56(6):S1924-33. PubMed ID: 24687447
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Toward dynamic magnetic resonance imaging of the vocal tract during speech production.
    Ventura SM; Freitas DR; Tavares JM
    J Voice; 2011 Jul; 25(4):511-8. PubMed ID: 20471801
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reconstruction of vocal tract geometries from biomechanical simulations.
    Dabbaghchian S; Arnela M; Engwall O; Guasch O
    Int J Numer Method Biomed Eng; 2019 Feb; 35(2):e3159. PubMed ID: 30242981
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.