These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 23204279)

  • 21. Using statistical deformable models to reconstruct vocal tract shape from magnetic resonance images.
    Vasconcelos MJ; Rua Ventura SM; Freitas DR; Tavares JM
    Proc Inst Mech Eng H; 2010 Oct; 224(10):1153-63. PubMed ID: 21138233
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The magnetic resonance imaging subset of the mngu0 articulatory corpus.
    Steiner I; Richmond K; Marshall I; Gray CD
    J Acoust Soc Am; 2012 Feb; 131(2):EL106-11. PubMed ID: 22352608
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Segmentation of tongue shapes during vowel production in magnetic resonance images based on statistical modelling.
    Delmoral JC; Rua Ventura SM; Tavares JMR
    Proc Inst Mech Eng H; 2018 Mar; 232(3):271-281. PubMed ID: 29350087
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Basic research on vocal fold dynamics: three-dimensional vibration analysis of human and canine larynges].
    Döllinger M; Rosanowski F; Eysholdt U; Lohscheller J
    HNO; 2008 Dec; 56(12):1213-20. PubMed ID: 17431569
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Real-time MRI of speaking at a resolution of 33 ms: undersampled radial FLASH with nonlinear inverse reconstruction.
    Niebergall A; Zhang S; Kunay E; Keydana G; Job M; Uecker M; Frahm J
    Magn Reson Med; 2013 Feb; 69(2):477-85. PubMed ID: 22498911
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A parametric model of the vocal tract area function for vowel and consonant simulation.
    Story BH
    J Acoust Soc Am; 2005 May; 117(5):3231-54. PubMed ID: 15957790
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Synergistic modes of vocal tract articulation for American English vowels.
    Story BH
    J Acoust Soc Am; 2005 Dec; 118(6):3834-59. PubMed ID: 16419828
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The effect of supine and upright position on vocal tract configurations during singing--a comparative study in professional tenors.
    Traser L; Burdumy M; Richter B; Vicari M; Echternach M
    J Voice; 2013 Mar; 27(2):141-8. PubMed ID: 23380394
    [TBL] [Abstract][Full Text] [Related]  

  • 29. New laryngoscope for quantitative high-speed imaging of human vocal folds vibration in the horizontal and vertical direction.
    George NA; de Mul FF; Qiu Q; Rakhorst G; Schutte HK
    J Biomed Opt; 2008; 13(6):064024. PubMed ID: 19123670
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Vocal tract area functions from magnetic resonance imaging.
    Story BH; Titze IR; Hoffman EA
    J Acoust Soc Am; 1996 Jul; 100(1):537-54. PubMed ID: 8675847
    [TBL] [Abstract][Full Text] [Related]  

  • 31. On Short-Time Estimation of Vocal Tract Length from Formant Frequencies.
    Lammert AC; Narayanan SS
    PLoS One; 2015; 10(7):e0132193. PubMed ID: 26177102
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Vocal tract configurations in tenors' passaggio in different vowel conditions-a real-time magnetic resonance imaging study.
    Echternach M; Traser L; Richter B
    J Voice; 2014 Mar; 28(2):262.e1-262.e8. PubMed ID: 24412038
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A multispeaker dataset of raw and reconstructed speech production real-time MRI video and 3D volumetric images.
    Lim Y; Toutios A; Bliesener Y; Tian Y; Lingala SG; Vaz C; Sorensen T; Oh M; Harper S; Chen W; Lee Y; Töger J; Monteserin ML; Smith C; Godinez B; Goldstein L; Byrd D; Nayak KS; Narayanan SS
    Sci Data; 2021 Jul; 8(1):187. PubMed ID: 34285240
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Phonovibrogram: vocal fold dynamics integrated within a single image].
    Eysholdt U; Lohscheller J
    HNO; 2008 Dec; 56(12):1207-12. PubMed ID: 17503008
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Characterizing Articulation in Apraxic Speech Using Real-Time Magnetic Resonance Imaging.
    Hagedorn C; Proctor M; Goldstein L; Wilson SM; Miller B; Gorno-Tempini ML; Narayanan SS
    J Speech Lang Hear Res; 2017 Apr; 60(4):877-891. PubMed ID: 28314241
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Multimodal acquisition of articulatory data: Geometrical and temporal registration.
    Aron M; Berger MO; Kerrien E; Wrobel-Dautcourt B; Potard B; Laprie Y
    J Acoust Soc Am; 2016 Feb; 139(2):636-48. PubMed ID: 26936548
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Weight-bearing MR imaging as an option in the study of gravitational effects on the vocal tract of untrained subjects in singing phonation.
    Traser L; Burdumy M; Richter B; Vicari M; Echternach M
    PLoS One; 2014; 9(11):e112405. PubMed ID: 25379885
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Real-time magnetic resonance imaging investigation of resonance tuning in soprano singing.
    Bresch E; Narayanan S
    J Acoust Soc Am; 2010 Nov; 128(5):EL335-41. PubMed ID: 21110548
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Lower Vocal Tract Morphologic Adjustments Are Relevant for Voice Timbre in Singing.
    Mainka A; Poznyakovskiy A; Platzek I; Fleischer M; Sundberg J; Mürbe D
    PLoS One; 2015; 10(7):e0132241. PubMed ID: 26186691
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Correspondence between laryngeal vocal fold movement and muscle activity during speech and nonspeech gestures.
    Poletto CJ; Verdun LP; Strominger R; Ludlow CL
    J Appl Physiol (1985); 2004 Sep; 97(3):858-66. PubMed ID: 15133000
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.