These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 23204403)

  • 1. The MORPH algorithm: ranking candidate genes for membership in Arabidopsis and tomato pathways.
    Tzfadia O; Amar D; Bradbury LM; Wurtzel ET; Shamir R
    Plant Cell; 2012 Nov; 24(11):4389-406. PubMed ID: 23204403
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The MORPH-R web server and software tool for predicting missing genes in biological pathways.
    Amar D; Frades I; Diels T; Zaltzman D; Ghatan N; Hedley PE; Alexandersson E; Tzfadia O; Shamir R
    Physiol Plant; 2015 Sep; 155(1):12-20. PubMed ID: 25625434
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transcriptional regulation of tocopherol biosynthesis in tomato.
    Quadrana L; Almeida J; Otaiza SN; Duffy T; Corrêa da Silva JV; de Godoy F; Asís R; Bermúdez L; Fernie AR; Carrari F; Rossi M
    Plant Mol Biol; 2013 Feb; 81(3):309-25. PubMed ID: 23247837
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Carotenoid profiling, in silico analysis and transcript profiling of miRNAs targeting carotenoid biosynthetic pathway genes in different developmental tissues of tomato.
    Koul A; Yogindran S; Sharma D; Kaul S; Rajam MV; Dhar MK
    Plant Physiol Biochem; 2016 Nov; 108():412-421. PubMed ID: 27552179
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The tomato mutation nxd1 reveals a gene necessary for neoxanthin biosynthesis and demonstrates that violaxanthin is a sufficient precursor for abscisic acid biosynthesis.
    Neuman H; Galpaz N; Cunningham FX; Zamir D; Hirschberg J
    Plant J; 2014 Apr; 78(1):80-93. PubMed ID: 24506237
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exploring tomato gene functions based on coexpression modules using graph clustering and differential coexpression approaches.
    Fukushima A; Nishizawa T; Hayakumo M; Hikosaka S; Saito K; Goto E; Kusano M
    Plant Physiol; 2012 Apr; 158(4):1487-502. PubMed ID: 22307966
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Combined transcriptome, genetic diversity and metabolite profiling in tomato fruit reveals that the ethylene response factor SlERF6 plays an important role in ripening and carotenoid accumulation.
    Lee JM; Joung JG; McQuinn R; Chung MY; Fei Z; Tieman D; Klee H; Giovannoni J
    Plant J; 2012 Apr; 70(2):191-204. PubMed ID: 22111515
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A new tomato NAC (NAM/ATAF1/2/CUC2) transcription factor, SlNAC4, functions as a positive regulator of fruit ripening and carotenoid accumulation.
    Zhu M; Chen G; Zhou S; Tu Y; Wang Y; Dong T; Hu Z
    Plant Cell Physiol; 2014 Jan; 55(1):119-35. PubMed ID: 24265273
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A transcriptional analysis of carotenoid, chlorophyll and plastidial isoprenoid biosynthesis genes during development and osmotic stress responses in Arabidopsis thaliana.
    Meier S; Tzfadia O; Vallabhaneni R; Gehring C; Wurtzel ET
    BMC Syst Biol; 2011 May; 5():77. PubMed ID: 21595952
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pheophytinase Knockdown Impacts Carbon Metabolism and Nutraceutical Content Under Normal Growth Conditions in Tomato.
    Lira BS; Rosado D; Almeida J; de Souza AP; Buckeridge MS; Purgatto E; Guyer L; Hörtensteiner S; Freschi L; Rossi M
    Plant Cell Physiol; 2016 Mar; 57(3):642-53. PubMed ID: 26880818
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A basic Helix-Loop-Helix (SlARANCIO), identified from a Solanum pennellii introgression line, affects carotenoid accumulation in tomato fruits.
    D'Amelia V; Raiola A; Carputo D; Filippone E; Barone A; Rigano MM
    Sci Rep; 2019 Mar; 9(1):3699. PubMed ID: 30842571
    [TBL] [Abstract][Full Text] [Related]  

  • 12. SlMYB72 Regulates the Metabolism of Chlorophylls, Carotenoids, and Flavonoids in Tomato Fruit.
    Wu M; Xu X; Hu X; Liu Y; Cao H; Chan H; Gong Z; Yuan Y; Luo Y; Feng B; Li Z; Deng W
    Plant Physiol; 2020 Jul; 183(3):854-868. PubMed ID: 32414899
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Screening of tissue-specific genes and promoters in tomato by comparing genome wide expression profiles of Arabidopsis orthologues.
    Lim CJ; Lee HY; Kim WB; Lee BS; Kim J; Ahmad R; Kim HA; Yi SY; Hur CG; Kwon SY
    Mol Cells; 2012 Jul; 34(1):53-9. PubMed ID: 22699756
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulation of carotenoid biosynthesis in plants: evidence for a key role of hydroxymethylbutenyl diphosphate reductase in controlling the supply of plastidial isoprenoid precursors.
    Botella-Pavía P; Besumbes O; Phillips MA; Carretero-Paulet L; Boronat A; Rodríguez-Concepción M
    Plant J; 2004 Oct; 40(2):188-99. PubMed ID: 15447646
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The strigolactone receptor SlDWARF14 plays a role in photosynthetic pigment accumulation and photosynthesis in tomato.
    Li Z; Pi Y; Zhai C; Xu D; Ma W; Chen H; Li Y; Wu H
    Plant Cell Rep; 2022 Oct; 41(10):2089-2105. PubMed ID: 35907035
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Overexpression of a citrus basic helix-loop-helix transcription factor (CubHLH1), which is homologous to Arabidopsis activation-tagged bri1 suppressor 1 interacting factor genes, modulates carotenoid metabolism in transgenic tomato.
    Endo T; Fujii H; Sugiyama A; Nakano M; Nakajima N; Ikoma Y; Omura M; Shimada T
    Plant Sci; 2016 Feb; 243():35-48. PubMed ID: 26795149
    [TBL] [Abstract][Full Text] [Related]  

  • 17. New insights in the control of antioxidants accumulation in tomato by transcriptomic analyses of genotypes exhibiting contrasting levels of fruit metabolites.
    Sacco A; Raiola A; Calafiore R; Barone A; Rigano MM
    BMC Genomics; 2019 Jan; 20(1):43. PubMed ID: 30646856
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Comprehensive Evaluation of Salt Tolerance in Tomato (Var. Ailsa Craig): Responses of Physiological and Transcriptional Changes in RBOH's and ABA Biosynthesis and Signalling Genes.
    Raziq A; Wang Y; Mohi Ud Din A; Sun J; Shu S; Guo S
    Int J Mol Sci; 2022 Jan; 23(3):. PubMed ID: 35163525
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tomato fruit carotenoid biosynthesis is adjusted to actual ripening progression by a light-dependent mechanism.
    Llorente B; D'Andrea L; Ruiz-Sola MA; Botterweg E; Pulido P; Andilla J; Loza-Alvarez P; Rodriguez-Concepcion M
    Plant J; 2016 Jan; 85(1):107-19. PubMed ID: 26648446
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DELLAs regulate chlorophyll and carotenoid biosynthesis to prevent photooxidative damage during seedling deetiolation in Arabidopsis.
    Cheminant S; Wild M; Bouvier F; Pelletier S; Renou JP; Erhardt M; Hayes S; Terry MJ; Genschik P; Achard P
    Plant Cell; 2011 May; 23(5):1849-60. PubMed ID: 21571951
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.