These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

268 related articles for article (PubMed ID: 23204413)

  • 1. A genetic system for Clostridium ljungdahlii: a chassis for autotrophic production of biocommodities and a model homoacetogen.
    Leang C; Ueki T; Nevin KP; Lovley DR
    Appl Environ Microbiol; 2013 Feb; 79(4):1102-9. PubMed ID: 23204413
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lactose-inducible system for metabolic engineering of Clostridium ljungdahlii.
    Banerjee A; Leang C; Ueki T; Nevin KP; Lovley DR
    Appl Environ Microbiol; 2014 Apr; 80(8):2410-6. PubMed ID: 24509933
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Converting carbon dioxide to butyrate with an engineered strain of Clostridium ljungdahlii.
    Ueki T; Nevin KP; Woodard TL; Lovley DR
    mBio; 2014 Oct; 5(5):e01636-14. PubMed ID: 25336453
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Rnf complex of Clostridium ljungdahlii is a proton-translocating ferredoxin:NAD+ oxidoreductase essential for autotrophic growth.
    Tremblay PL; Zhang T; Dar SA; Leang C; Lovley DR
    mBio; 2012 Dec; 4(1):e00406-12. PubMed ID: 23269825
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CRISPR-Cas12a-Mediated Gene Deletion and Regulation in
    Zhao R; Liu Y; Zhang H; Chai C; Wang J; Jiang W; Gu Y
    ACS Synth Biol; 2019 Oct; 8(10):2270-2279. PubMed ID: 31526005
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A New Shuttle Plasmid That Stably Replicates in Clostridium acetobutylicum.
    Lee SH; Kwon MA; Choi S; Kim S; Kim J; Shin YA; Kim KH
    J Microbiol Biotechnol; 2015 Oct; 25(10):1702-8. PubMed ID: 26032368
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel system for efficient isolation of Clostridium double-crossover allelic exchange mutants enabling markerless chromosomal gene deletions and DNA integration.
    Al-Hinai MA; Fast AG; Papoutsakis ET
    Appl Environ Microbiol; 2012 Nov; 78(22):8112-21. PubMed ID: 22983967
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ethanol Metabolism Dynamics in Clostridium ljungdahlii Grown on Carbon Monoxide.
    Liu ZY; Jia DC; Zhang KD; Zhu HF; Zhang Q; Jiang WH; Gu Y; Li FL
    Appl Environ Microbiol; 2020 Jul; 86(14):. PubMed ID: 32414802
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Engineering Clostridium ljungdahlii as the gas-fermenting cell factory for the production of biofuels and biochemicals.
    Zhang L; Zhao R; Jia D; Jiang W; Gu Y
    Curr Opin Chem Biol; 2020 Dec; 59():54-61. PubMed ID: 32480247
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CRISPR/Cas9-Based Efficient Genome Editing in Clostridium ljungdahlii, an Autotrophic Gas-Fermenting Bacterium.
    Huang H; Chai C; Li N; Rowe P; Minton NP; Yang S; Jiang W; Gu Y
    ACS Synth Biol; 2016 Dec; 5(12):1355-1361. PubMed ID: 27276212
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of Clostridium ljungdahlii OTA1: a non-autotrophic hyper ethanol-producing strain.
    Whitham JM; Schulte MJ; Bobay BG; Bruno-Barcena JM; Chinn MS; Flickinger MC; Pawlak JJ; Grunden AM
    Appl Microbiol Biotechnol; 2017 Feb; 101(4):1615-1630. PubMed ID: 27866253
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterizing acetogenic metabolism using a genome-scale metabolic reconstruction of Clostridium ljungdahlii.
    Nagarajan H; Sahin M; Nogales J; Latif H; Lovley DR; Ebrahim A; Zengler K
    Microb Cell Fact; 2013 Nov; 12():118. PubMed ID: 24274140
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Metabolism of
    Lo J; Humphreys JR; Jack J; Urban C; Magnusson L; Xiong W; Gu Y; Ren ZJ; Maness PC
    Front Bioeng Biotechnol; 2020; 8():560726. PubMed ID: 33195125
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rediverting carbon flux in Clostridium ljungdahlii using CRISPR interference (CRISPRi).
    Woolston BM; Emerson DF; Currie DH; Stephanopoulos G
    Metab Eng; 2018 Jul; 48():243-253. PubMed ID: 29906505
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phage serine integrase-mediated genome engineering for efficient expression of chemical biosynthetic pathway in gas-fermenting Clostridium ljungdahlii.
    Huang H; Chai C; Yang S; Jiang W; Gu Y
    Metab Eng; 2019 Mar; 52():293-302. PubMed ID: 30633974
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Expanding the molecular toolkit for the homoacetogen Clostridium ljungdahlii.
    Molitor B; Kirchner K; Henrich AW; Schmitz S; Rosenbaum MA
    Sci Rep; 2016 Aug; 6():31518. PubMed ID: 27527841
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Industrial Acetogenic Biocatalysts: A Comparative Metabolic and Genomic Analysis.
    Bengelsdorf FR; Poehlein A; Linder S; Erz C; Hummel T; Hoffmeister S; Daniel R; Dürre P
    Front Microbiol; 2016; 7():1036. PubMed ID: 27458439
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Clostridium ljungdahlii represents a microbial production platform based on syngas.
    Köpke M; Held C; Hujer S; Liesegang H; Wiezer A; Wollherr A; Ehrenreich A; Liebl W; Gottschalk G; Dürre P
    Proc Natl Acad Sci U S A; 2010 Jul; 107(29):13087-92. PubMed ID: 20616070
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genetic Evidence Reveals the Indispensable Role of the
    Klask CM; Jäger B; Casini I; Angenent LT; Molitor B
    Front Microbiol; 2022; 13():887578. PubMed ID: 35615511
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metabolic Engineering of Gas-Fermenting
    Jia D; He M; Tian Y; Shen S; Zhu X; Wang Y; Zhuang Y; Jiang W; Gu Y
    ACS Synth Biol; 2021 Oct; 10(10):2628-2638. PubMed ID: 34549587
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.