BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 23204493)

  • 1. Within- and trans-generational plasticity affects the opportunity for selection in barbed goatgrass (Aegilops triuncialis).
    Espeland EK; Rice KJ
    Am J Bot; 2012 Dec; 99(12):2058-62. PubMed ID: 23204493
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Patterns of introduction and adaptation during the invasion of Aegilops triuncialis (Poaceae) into Californian serpentine soils.
    Meimberg H; Milan NF; Karatassiou M; Espeland EK; McKay JK; Rice KJ
    Mol Ecol; 2010 Dec; 19(23):5308-19. PubMed ID: 20977511
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Linking the spatial scale of environmental variation and the evolution of phenotypic plasticity: selection favors adaptive plasticity in fine-grained environments.
    Baythavong BS
    Am Nat; 2011 Jul; 178(1):75-87. PubMed ID: 21670579
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterizing selection on phenotypic plasticity in response to natural environmental heterogeneity.
    Baythavong BS; Stanton ML
    Evolution; 2010 Oct; 64(10):2904-20. PubMed ID: 20649815
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Local adaptation, patterns of selection, and gene flow in the Californian serpentine sunflower (Helianthus exilis).
    Sambatti JB; Rice KJ
    Evolution; 2006 Apr; 60(4):696-710. PubMed ID: 16739452
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Understanding the consequences of seed dispersal in a heterogeneous environment.
    Baythavong BS; Stanton ML; Rice KJ
    Ecology; 2009 Aug; 90(8):2118-28. PubMed ID: 19739374
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cross-generational environmental effects and the evolution of offspring size in the Trinidadian guppy Poecilia reticulata.
    Bashey F
    Evolution; 2006 Feb; 60(2):348-61. PubMed ID: 16610325
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Edaphic adaptation maintains the coexistence of two cryptic species on serpentine soils.
    Yost JM; Barry T; Kay KM; Rajakaruna N
    Am J Bot; 2012 May; 99(5):890-7. PubMed ID: 22539516
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hybridization, recombination, and the genetic basis of fitness variation across environments in Avena barbata.
    Latta RG; Gardner KM; Johansen-Morris AD
    Genetica; 2007 Feb; 129(2):167-77. PubMed ID: 17006737
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Grain of environment explains variation in the strength of genotype × environment interaction.
    Rodríguez RL
    J Evol Biol; 2012 Sep; 25(9):1897-901. PubMed ID: 22805149
    [TBL] [Abstract][Full Text] [Related]  

  • 11. EFFECTS OF MATERNAL AND PATERNAL ENVIRONMENT AND GENOTYPE ON OFFSPRING PHENOTYPE IN SOLIDAGO ALTISSIMA L.
    Schmid B; Dolt C
    Evolution; 1994 Oct; 48(5):1525-1549. PubMed ID: 28568418
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Testing for local adaptation in Avena barbata: a classic example of ecotypic divergence.
    Latta RG
    Mol Ecol; 2009 Sep; 18(18):3781-91. PubMed ID: 19674308
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Distribution of bulbil- and seed-producing plants of Poa alpina (Poaceae) and their growth and reproduction in common gardens suggest adaptation to different elevations.
    Steiner BL; Armbruster GF; Scheepens JF; Stöcklin J
    Am J Bot; 2012 Dec; 99(12):2035-44. PubMed ID: 23221498
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fitness variation and local distribution limits in an annual plant population.
    Emery NC; Rice KJ; Stanton ML
    Evolution; 2011 Apr; 65(4):1011-20. PubMed ID: 21062275
    [TBL] [Abstract][Full Text] [Related]  

  • 15. QTL mapping for a trade-off between leaf and bud production in a recombinant inbred population of Microseris douglasii and M. bigelovii (Asteraceae, Lactuceae): a potential preadaptation for the colonization of serpentine soils.
    Gailing O; Macnair MR; Bachmann K
    Plant Biol (Stuttg); 2004 Jul; 6(4):440-6. PubMed ID: 15248127
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Water stress alters the genetic architecture of functional traits associated with drought adaptation in Avena barbata.
    Sherrard ME; Maherali H; Latta RG
    Evolution; 2009 Mar; 63(3):702-15. PubMed ID: 19054049
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Local adaptation and cogradient selection in the alpine plant, Poa hiemata, along a narrow altitudinal gradient.
    Byars SG; Papst W; Hoffmann AA
    Evolution; 2007 Dec; 61(12):2925-41. PubMed ID: 17924954
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hypotheses, mechanisms and trade-offs of tolerance and adaptation to serpentine soils: from species to ecosystem level.
    Kazakou E; Dimitrakopoulos PG; Baker AJ; Reeves RD; Troumbis AY
    Biol Rev Camb Philos Soc; 2008 Nov; 83(4):495-508. PubMed ID: 18823392
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phenotypic plasticity, precipitation, and invasiveness in the fire-promoting grass Pennisetum setaceum (Poaceae).
    Poulin J; Sakai AK; Weller SG; Nguyen T
    Am J Bot; 2007 Apr; 94(4):533-41. PubMed ID: 21636423
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identifying loci under selection across contrasting environments in Avena barbata using quantitative trait locus mapping.
    Gardner KM; Latta RG
    Mol Ecol; 2006 Apr; 15(5):1321-33. PubMed ID: 16626456
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.