These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 23205467)

  • 1. Investigation of hypoxia-induced myocardial injury dynamics in a tissue interface mimicking microfluidic device.
    Ren L; Liu W; Wang Y; Wang JC; Tu Q; Xu J; Liu R; Shen SF; Wang J
    Anal Chem; 2013 Jan; 85(1):235-44. PubMed ID: 23205467
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microfluidic Coculture Device for Monitoring of Inflammation-Induced Myocardial Injury Dynamics.
    Ai X; Lu W; Zeng K; Li C; Jiang Y; Tu P
    Anal Chem; 2018 Apr; 90(7):4485-4494. PubMed ID: 29533659
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Construction of oxygen and chemical concentration gradients in a single microfluidic device for studying tumor cell-drug interactions in a dynamic hypoxia microenvironment.
    Wang L; Liu W; Wang Y; Wang JC; Tu Q; Liu R; Wang J
    Lab Chip; 2013 Feb; 13(4):695-705. PubMed ID: 23254684
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Determination of Benzopyrene-Induced Lung Inflammatory and Cytotoxic Injury in a Chemical Gradient-Integrated Microfluidic Bronchial Epithelium System.
    Zhang F; Tian C; Liu W; Wang K; Wei Y; Wang H; Wang J; Liu S
    ACS Sens; 2018 Dec; 3(12):2716-2725. PubMed ID: 30507116
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Integrated microfluidic chip for endothelial cells culture and analysis exposed to a pulsatile and oscillatory shear stress.
    Shao J; Wu L; Wu J; Zheng Y; Zhao H; Jin Q; Zhao J
    Lab Chip; 2009 Nov; 9(21):3118-25. PubMed ID: 19823728
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An integrated microfluidic culture device to regulate endothelial cell differentiation from embryonic stem cells.
    Lee JM; Kim JE; Kang E; Lee SH; Chung BG
    Electrophoresis; 2011 Nov; 32(22):3133-7. PubMed ID: 22102496
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterizing doxorubicin-induced apoptosis in HepG2 cells using an integrated microfluidic device.
    Ye N; Qin J; Liu X; Shi W; Lin B
    Electrophoresis; 2007 Apr; 28(7):1146-53. PubMed ID: 17330224
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A microfluidic oxygen sink to create a targeted cellular hypoxic microenvironment under ambient atmospheric conditions.
    Barmaki S; Jokinen V; Obermaier D; Blokhina D; Korhonen M; Ras RHA; Vuola J; Franssila S; Kankuri E
    Acta Biomater; 2018 Jun; 73():167-179. PubMed ID: 29649636
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In-situ measurement of cellular microenvironments in a microfluidic device.
    Lin Z; Cherng-Wen T; Roy P; Trau D
    Lab Chip; 2009 Jan; 9(2):257-62. PubMed ID: 19107282
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Generation of oxygen gradients in microfluidic devices for cell culture using spatially confined chemical reactions.
    Chen YA; King AD; Shih HC; Peng CC; Wu CY; Liao WH; Tung YC
    Lab Chip; 2011 Nov; 11(21):3626-33. PubMed ID: 21915399
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Study of ethanol induced toxicity in liver explants using microfluidic devices.
    Hattersley SM; Greenman J; Haswell SJ
    Biomed Microdevices; 2011 Dec; 13(6):1005-14. PubMed ID: 21800147
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biomimetic engineering of a generic cell-on-membrane architecture by microfluidic engraving for on-chip bioassays.
    Lee SW; Noh JY; Park SC; Chung JH; Lee B; Lee SD
    Langmuir; 2012 May; 28(20):7585-90. PubMed ID: 22554204
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biofabrication of a three-dimensional liver micro-organ as an in vitro drug metabolism model.
    Chang R; Emami K; Wu H; Sun W
    Biofabrication; 2010 Dec; 2(4):045004. PubMed ID: 21079286
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A multi-layer microfluidic device for efficient culture and analysis of renal tubular cells.
    Jang KJ; Suh KY
    Lab Chip; 2010 Jan; 10(1):36-42. PubMed ID: 20024048
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel high aspect ratio microfluidic design to provide a stable and uniform microenvironment for cell growth in a high throughput mammalian cell culture array.
    Hung PJ; Lee PJ; Sabounchi P; Aghdam N; Lin R; Lee LP
    Lab Chip; 2005 Jan; 5(1):44-8. PubMed ID: 15616739
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rapid spatial and temporal controlled signal delivery over large cell culture areas.
    VanDersarl JJ; Xu AM; Melosh NA
    Lab Chip; 2011 Sep; 11(18):3057-63. PubMed ID: 21805010
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Microfluidic cell culture array chip for drug screening assays].
    Zheng Y; Wu J; Shao J; Jin Q; Zhao J
    Sheng Wu Gong Cheng Xue Bao; 2009 May; 25(5):779-85. PubMed ID: 19670650
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamic trapping and high-throughput patterning of cells using pneumatic microstructures in an integrated microfluidic device.
    Liu W; Li L; Wang JC; Tu Q; Ren L; Wang Y; Wang J
    Lab Chip; 2012 May; 12(9):1702-9. PubMed ID: 22430256
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On-chip monitoring of skeletal myoblast transplantation for the treatment of hypoxia-induced myocardial injury.
    He J; Ma C; Liu W; Wang J
    Analyst; 2014 Sep; 139(18):4482-90. PubMed ID: 25025637
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Continuous perfusion microfluidic cell culture array for high-throughput cell-based assays.
    Hung PJ; Lee PJ; Sabounchi P; Lin R; Lee LP
    Biotechnol Bioeng; 2005 Jan; 89(1):1-8. PubMed ID: 15580587
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.