These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 23205467)

  • 41. A practical guide to microfluidic perfusion culture of adherent mammalian cells.
    Kim L; Toh YC; Voldman J; Yu H
    Lab Chip; 2007 Jun; 7(6):681-94. PubMed ID: 17538709
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A multishear microfluidic device for quantitative analysis of calcium dynamics in osteoblasts.
    Kou S; Pan L; van Noort D; Meng G; Wu X; Sun H; Xu J; Lee I
    Biochem Biophys Res Commun; 2011 May; 408(2):350-5. PubMed ID: 21514277
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Characterization of the interaction between fibroblasts and tumor cells on a microfluidic co-culture device.
    Ma H; Liu T; Qin J; Lin B
    Electrophoresis; 2010 May; 31(10):1599-605. PubMed ID: 20414883
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Evaluating cell migration in vitro by the method based on cell patterning within microfluidic channels.
    Wang Y; Chen Z; Xiao L; Du Z; Han X; Yu X; Lu Y
    Electrophoresis; 2012 Mar; 33(5):773-9. PubMed ID: 22522534
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A fluidic device to study directional angiogenesis in complex tissue and organ culture models.
    Barkefors I; Thorslund S; Nikolajeff F; Kreuger J
    Lab Chip; 2009 Feb; 9(4):529-35. PubMed ID: 19190788
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Spatiotemporally controlled and multifactor involved assay of neuronal compartment regeneration after chemical injury in an integrated microfluidics.
    Li L; Ren L; Liu W; Wang JC; Wang Y; Tu Q; Xu J; Liu R; Zhang Y; Yuan MS; Li T; Wang J
    Anal Chem; 2012 Aug; 84(15):6444-53. PubMed ID: 22793989
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Engineering of a microfluidic cell culture platform embedded with nanoscale features.
    Yang Y; Kulangara K; Sia J; Wang L; Leong KW
    Lab Chip; 2011 May; 11(9):1638-46. PubMed ID: 21442110
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Cell culture chip using low-shear mass transport.
    Liu K; Pitchimani R; Dang D; Bayer K; Harrington T; Pappas D
    Langmuir; 2008 Jun; 24(11):5955-60. PubMed ID: 18471001
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A software-programmable microfluidic device for automated biology.
    Fidalgo LM; Maerkl SJ
    Lab Chip; 2011 May; 11(9):1612-9. PubMed ID: 21416077
    [TBL] [Abstract][Full Text] [Related]  

  • 50. An acoustically driven microliter flow chamber on a chip (muFCC) for cell-cell and cell-surface interaction studies.
    Schneider MF; Guttenberg Z; Schneider SW; Sritharan K; Myles VM; Pamukci U; Wixforth A
    Chemphyschem; 2008 Mar; 9(4):641-5. PubMed ID: 18306189
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Drug permeability assay using microhole-trapped cells in a microfluidic device.
    Yeon JH; Park JK
    Anal Chem; 2009 Mar; 81(5):1944-51. PubMed ID: 19203200
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A microfluidic chip for axonal isolation and electrophysiological measurements.
    Jokinen V; Sakha P; Suvanto P; Rivera C; Franssila S; Lauri SE; Huttunen HJ
    J Neurosci Methods; 2013 Jan; 212(2):276-82. PubMed ID: 23124090
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Development of a microfluidic device for the maintenance and interrogation of viable tissue biopsies.
    Hattersley SM; Dyer CE; Greenman J; Haswell SJ
    Lab Chip; 2008 Nov; 8(11):1842-6. PubMed ID: 18941683
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Microfluidic single-cell cultivation chip with controllable immobilization and selective release of yeast cells.
    Zhu Z; Frey O; Ottoz DS; Rudolf F; Hierlemann A
    Lab Chip; 2012 Mar; 12(5):906-15. PubMed ID: 22193373
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Microfluidics/CMOS orthogonal capabilities for cell biology.
    Linder V; Koster S; Franks W; Kraus T; Verpoorte E; Heer F; Hierlemann A; de Rooij NF
    Biomed Microdevices; 2006 Jun; 8(2):159-66. PubMed ID: 16688575
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Microfluidic PDMS (polydimethylsiloxane) bioreactor for large-scale culture of hepatocytes.
    Leclerc E; Sakai Y; Fujii T
    Biotechnol Prog; 2004; 20(3):750-5. PubMed ID: 15176878
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Microfluidic platforms for hepatocyte cell culture: new technologies and applications.
    Goral VN; Yuen PK
    Ann Biomed Eng; 2012 Jun; 40(6):1244-54. PubMed ID: 22042626
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Prevention of air bubble formation in a microfluidic perfusion cell culture system using a microscale bubble trap.
    Sung JH; Shuler ML
    Biomed Microdevices; 2009 Aug; 11(4):731-8. PubMed ID: 19212816
    [TBL] [Abstract][Full Text] [Related]  

  • 59. An integrated microfluidic culture device for quantitative analysis of human embryonic stem cells.
    Kamei K; Guo S; Yu ZT; Takahashi H; Gschweng E; Suh C; Wang X; Tang J; McLaughlin J; Witte ON; Lee KB; Tseng HR
    Lab Chip; 2009 Feb; 9(4):555-63. PubMed ID: 19190791
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Direct plate-reader measurement of nitric oxide released from hypoxic erythrocytes flowing through a microfluidic device.
    Halpin ST; Spence DM
    Anal Chem; 2010 Sep; 82(17):7492-7. PubMed ID: 20681630
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.