These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
113 related articles for article (PubMed ID: 23205634)
1. Effects of the lipid environment, cholesterol and bile acids on the function of the purified and reconstituted human ABCG2 protein. Telbisz Á; Özvegy-Laczka C; Hegedűs T; Váradi A; Sarkadi B Biochem J; 2013 Mar; 450(2):387-95. PubMed ID: 23205634 [TBL] [Abstract][Full Text] [Related]
2. Regulation of the function of the human ABCG2 multidrug transporter by cholesterol and bile acids: effects of mutations in potential substrate and steroid binding sites. Telbisz Á; Hegedüs C; Váradi A; Sarkadi B; Özvegy-Laczka C Drug Metab Dispos; 2014 Apr; 42(4):575-85. PubMed ID: 24384916 [TBL] [Abstract][Full Text] [Related]
3. Cholesterol potentiates ABCG2 activity in a heterologous expression system: improved in vitro model to study function of human ABCG2. Pál A; Méhn D; Molnár E; Gedey S; Mészáros P; Nagy T; Glavinas H; Janáky T; von Richter O; Báthori G; Szente L; Krajcsi P J Pharmacol Exp Ther; 2007 Jun; 321(3):1085-94. PubMed ID: 17347325 [TBL] [Abstract][Full Text] [Related]
4. Membrane cholesterol selectively modulates the activity of the human ABCG2 multidrug transporter. Telbisz A; Müller M; Ozvegy-Laczka C; Homolya L; Szente L; Váradi A; Sarkadi B Biochim Biophys Acta; 2007 Nov; 1768(11):2698-713. PubMed ID: 17662239 [TBL] [Abstract][Full Text] [Related]
5. Mutations of the central tyrosines of putative cholesterol recognition amino acid consensus (CRAC) sequences modify folding, activity, and sterol-sensing of the human ABCG2 multidrug transporter. Gál Z; Hegedüs C; Szakács G; Váradi A; Sarkadi B; Özvegy-Laczka C Biochim Biophys Acta; 2015 Feb; 1848(2):477-87. PubMed ID: 25445676 [TBL] [Abstract][Full Text] [Related]
6. Bile acids stimulate ATP hydrolysis in the purified cholesterol transporter ABCG5/G8. Johnson BJ; Lee JY; Pickert A; Urbatsch IL Biochemistry; 2010 Apr; 49(16):3403-11. PubMed ID: 20210363 [TBL] [Abstract][Full Text] [Related]
7. The multidrug resistance half-transporter ABCG2 is purified as a tetramer upon selective extraction from membranes. Dezi M; Fribourg PF; Di Cicco A; Arnaud O; Marco S; Falson P; Di Pietro A; Lévy D Biochim Biophys Acta; 2010 Nov; 1798(11):2094-101. PubMed ID: 20691149 [TBL] [Abstract][Full Text] [Related]
8. Characterization of drug transport, ATP hydrolysis, and nucleotide trapping by the human ABCG2 multidrug transporter. Modulation of substrate specificity by a point mutation. Ozvegy C; Váradi A; Sarkadi B J Biol Chem; 2002 Dec; 277(50):47980-90. PubMed ID: 12374800 [TBL] [Abstract][Full Text] [Related]
9. Single nucleotide polymorphisms result in impaired membrane localization and reduced atpase activity in multidrug transporter ABCG2. Mizuarai S; Aozasa N; Kotani H Int J Cancer; 2004 Mar; 109(2):238-46. PubMed ID: 14750175 [TBL] [Abstract][Full Text] [Related]
10. Effect of Walker A mutation (K86M) on oligomerization and surface targeting of the multidrug resistance transporter ABCG2. Henriksen U; Gether U; Litman T J Cell Sci; 2005 Apr; 118(Pt 7):1417-26. PubMed ID: 15769853 [TBL] [Abstract][Full Text] [Related]
11. Oligomerization of the human ABC transporter ABCG2: evaluation of the native protein and chimeric dimers. Bhatia A; Schäfer HJ; Hrycyna CA Biochemistry; 2005 Aug; 44(32):10893-904. PubMed ID: 16086592 [TBL] [Abstract][Full Text] [Related]
12. ABCG2 (breast cancer resistance protein/mitoxantrone resistance-associated protein) ATPase assay: a useful tool to detect drug-transporter interactions. Glavinas H; Kis E; Pál A; Kovács R; Jani M; Vági E; Molnár E; Bánsághi S; Kele Z; Janáky T; Báthori G; von Richter O; Koomen GJ; Krajcsi P Drug Metab Dispos; 2007 Sep; 35(9):1533-42. PubMed ID: 17537873 [TBL] [Abstract][Full Text] [Related]
13. Lipid regulation of the ABCB1 and ABCG2 multidrug transporters. Hegedüs C; Telbisz Á; Hegedűs T; Sarkadi B; Özvegy-Laczka C Adv Cancer Res; 2015; 125():97-137. PubMed ID: 25640268 [TBL] [Abstract][Full Text] [Related]
14. The nature of amino acid 482 of human ABCG2 affects substrate transport and ATP hydrolysis but not substrate binding. Ejendal KF; Diop NK; Schweiger LC; Hrycyna CA Protein Sci; 2006 Jul; 15(7):1597-607. PubMed ID: 16815914 [TBL] [Abstract][Full Text] [Related]
15. Purification and 3D structural analysis of oligomeric human multidrug transporter ABCG2. McDevitt CA; Collins RF; Conway M; Modok S; Storm J; Kerr ID; Ford RC; Callaghan R Structure; 2006 Nov; 14(11):1623-32. PubMed ID: 17098188 [TBL] [Abstract][Full Text] [Related]
16. Combined localization and real-time functional studies using a GFP-tagged ABCG2 multidrug transporter. Orbán TI; Seres L; Ozvegy-Laczka C; Elkind NB; Sarkadi B; Homolya L Biochem Biophys Res Commun; 2008 Mar; 367(3):667-73. PubMed ID: 18182157 [TBL] [Abstract][Full Text] [Related]
17. Single amino acid (482) variants of the ABCG2 multidrug transporter: major differences in transport capacity and substrate recognition. Ozvegy-Laczka C; Köblös G; Sarkadi B; Váradi A Biochim Biophys Acta; 2005 Feb; 1668(1):53-63. PubMed ID: 15670731 [TBL] [Abstract][Full Text] [Related]
18. Predicting Activators and Inhibitors of the Breast Cancer Resistance Protein (ABCG2) and P-Glycoprotein (ABCB1) Based on Mechanistic Considerations. Egido E; Müller R; Li-Blatter X; Merino G; Seelig A Mol Pharm; 2015 Nov; 12(11):4026-37. PubMed ID: 26372856 [TBL] [Abstract][Full Text] [Related]
19. Oligomerization domain of the multidrug resistance-associated transporter ABCG2 and its dominant inhibitory activity. Xu J; Peng H; Chen Q; Liu Y; Dong Z; Zhang JT Cancer Res; 2007 May; 67(9):4373-81. PubMed ID: 17483351 [TBL] [Abstract][Full Text] [Related]
20. N-Linked glycosylation of the human ABC transporter ABCG2 on asparagine 596 is not essential for expression, transport activity, or trafficking to the plasma membrane. Diop NK; Hrycyna CA Biochemistry; 2005 Apr; 44(14):5420-9. PubMed ID: 15807535 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]