BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

359 related articles for article (PubMed ID: 23205758)

  • 1. Rational design of highly sensitive fluorescence probes for protease and glycosidase based on precisely controlled spirocyclization.
    Sakabe M; Asanuma D; Kamiya M; Iwatate RJ; Hanaoka K; Terai T; Nagano T; Urano Y
    J Am Chem Soc; 2013 Jan; 135(1):409-14. PubMed ID: 23205758
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [In vivo cancer detection with a newly designed fluorescent probe].
    Urano Y
    Gan To Kagaku Ryoho; 2013 Mar; 40(3):299-303. PubMed ID: 23507591
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Red fluorescent scaffold for highly sensitive protease activity probes.
    Kushida Y; Hanaoka K; Komatsu T; Terai T; Ueno T; Yoshida K; Uchiyama M; Nagano T
    Bioorg Med Chem Lett; 2012 Jun; 22(12):3908-11. PubMed ID: 22607681
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vivo imaging of intraperitoneally disseminated tumors in model mice by using activatable fluorescent small-molecular probes for activity of cathepsins.
    Fujii T; Kamiya M; Urano Y
    Bioconjug Chem; 2014 Oct; 25(10):1838-46. PubMed ID: 25196809
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A simple and pH-independent and ultrasensitive fluorescent probe for the rapid detection of Hg2+.
    Luo AL; Gong YJ; Yuan Y; Zhang J; Zhang CC; Zhang XB; Tan W
    Talanta; 2013 Dec; 117():326-32. PubMed ID: 24209348
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Asymmetric Rhodamine-Based Fluorescent Probe for Multicolour In Vivo Imaging.
    Iwatate RJ; Kamiya M; Urano Y
    Chemistry; 2016 Jan; 22(5):1696-703. PubMed ID: 26744125
    [TBL] [Abstract][Full Text] [Related]  

  • 7. β-Galactosidase fluorescence probe with improved cellular accumulation based on a spirocyclized rhodol scaffold.
    Kamiya M; Asanuma D; Kuranaga E; Takeishi A; Sakabe M; Miura M; Nagano T; Urano Y
    J Am Chem Soc; 2011 Aug; 133(33):12960-3. PubMed ID: 21786797
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of a highly specific rhodamine-based fluorescence probe for hypochlorous acid and its application to real-time imaging of phagocytosis.
    Kenmoku S; Urano Y; Kojima H; Nagano T
    J Am Chem Soc; 2007 Jun; 129(23):7313-8. PubMed ID: 17506554
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rhodamine-based 'turn-on' fluorescent probe for Cu(II) and its fluorescence imaging in living cells.
    Tian MZ; Hu MM; Fan JL; Peng XJ; Wang JY; Sun SG; Zhang R
    Bioorg Med Chem Lett; 2013 May; 23(10):2916-9. PubMed ID: 23570786
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of novel assays for proteolytic enzymes using rhodamine-based fluorogenic substrates.
    Grant SK; Sklar JG; Cummings RT
    J Biomol Screen; 2002 Dec; 7(6):531-40. PubMed ID: 14599351
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A rhodamine-based fluorescent probe for detecting Hg(2+) in a fully aqueous environment.
    Chen X; Meng X; Wang S; Cai Y; Wu Y; Feng Y; Zhu M; Guo Q
    Dalton Trans; 2013 Oct; 42(41):14819-25. PubMed ID: 23986178
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A highly sensitive, cell-membrane-permeable fluorescent probe for glutathione.
    Yoshida M; Kamiya M; Yamasoba T; Urano Y
    Bioorg Med Chem Lett; 2014 Sep; 24(18):4363-4366. PubMed ID: 25176192
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A new fluorescent and colorimetric probe for Cu2+ in live cells.
    Liu WY; Li HY; Zhao BX; Miao JY
    Analyst; 2012 Aug; 137(15):3466-9. PubMed ID: 22701875
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A highly selective and sensitive fluorescence probe for the hypochlorite anion.
    Chen X; Wang X; Wang S; Shi W; Wang K; Ma H
    Chemistry; 2008; 14(15):4719-24. PubMed ID: 18386284
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evolution of group 14 rhodamines as platforms for near-infrared fluorescence probes utilizing photoinduced electron transfer.
    Koide Y; Urano Y; Hanaoka K; Terai T; Nagano T
    ACS Chem Biol; 2011 Jun; 6(6):600-8. PubMed ID: 21375253
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Two new rhodamine-based fluorescent chemosensors for Fe3+ in aqueous solution.
    Liu Y; Xu Z; Wang J; Zhang D; Ye Y; Zhao Y
    Luminescence; 2014 Nov; 29(7):945-51. PubMed ID: 24700778
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coumarin-caged rosamine probes based on a unique intramolecular carbon-carbon spirocyclization.
    Lin W; Long L; Tan W; Chen B; Yuan L
    Chemistry; 2010 Apr; 16(13):3914-7. PubMed ID: 20222098
    [No Abstract]   [Full Text] [Related]  

  • 18. Determination of intracellular pH using sensitive, clickable fluorescent probes.
    Yapici NB; Mandalapu SR; Chew TL; Khuon S; Bi L
    Bioorg Med Chem Lett; 2012 Apr; 22(7):2440-3. PubMed ID: 22386664
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rhodamine-based "turn-on" fluorescent probe with high selectivity for Fe(2+) imaging in living cells.
    Hou GG; Wang CH; Sun JF; Yang MZ; Lin D; Li HJ
    Biochem Biophys Res Commun; 2013 Oct; 439(4):459-63. PubMed ID: 24025683
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Highly sensitive fluorescence probes for nitric oxide based on boron dipyrromethene chromophore-rational design of potentially useful bioimaging fluorescence probe.
    Gabe Y; Urano Y; Kikuchi K; Kojima H; Nagano T
    J Am Chem Soc; 2004 Mar; 126(10):3357-67. PubMed ID: 15012166
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.