These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

272 related articles for article (PubMed ID: 23205983)

  • 1. Excitation energies from extended random phase approximation employed with approximate one- and two-electron reduced density matrices.
    Chatterjee K; Pernal K
    J Chem Phys; 2012 Nov; 137(20):204109. PubMed ID: 23205983
    [TBL] [Abstract][Full Text] [Related]  

  • 2. How accurate is the strongly orthogonal geminal theory in predicting excitation energies? Comparison of the extended random phase approximation and the linear response theory approaches.
    Pernal K; Chatterjee K; Kowalski PH
    J Chem Phys; 2014 Jan; 140(1):014101. PubMed ID: 24410215
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling core-level excitations with variationally optimized reduced-density matrices and the extended random phase approximation.
    Maradzike E; DePrince AE
    J Chem Phys; 2018 Dec; 149(23):234101. PubMed ID: 30579305
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intergeminal Correction to the Antisymmetrized Product of Strongly Orthogonal Geminals Derived from the Extended Random Phase Approximation.
    Pernal K
    J Chem Theory Comput; 2014 Oct; 10(10):4332-41. PubMed ID: 26588130
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Excitation energies from range-separated time-dependent density and density matrix functional theory.
    Pernal K
    J Chem Phys; 2012 May; 136(18):184105. PubMed ID: 22583275
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ERPA-APSG: a computationally efficient geminal-based method for accurate description of chemical systems.
    Pastorczak E; Pernal K
    Phys Chem Chem Phys; 2015 Apr; 17(14):8622-6. PubMed ID: 25761196
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Perturbation theory corrections to the two-particle reduced density matrix variational method.
    Juhasz T; Mazziotti DA
    J Chem Phys; 2004 Jul; 121(3):1201-5. PubMed ID: 15260661
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Treating molecules in arbitrary spin states using the parametric two-electron reduced-density-matrix method.
    Schwerdtfeger CA; Mazziotti DA
    J Chem Phys; 2012 Jul; 137(3):034107. PubMed ID: 22830683
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Parametric two-electron reduced-density-matrix method applied to computing molecular energies and properties at nonequilibrium geometries.
    DePrince AE; Kamarchik E; Mazziotti DA
    J Chem Phys; 2008 Jun; 128(23):234103. PubMed ID: 18570487
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Testing the parametric two-electron reduced-density-matrix method with improved functionals: application to the conversion of hydrogen peroxide to oxywater.
    Schwerdtfeger CA; DePrince AE; Mazziotti DA
    J Chem Phys; 2011 May; 134(17):174102. PubMed ID: 21548668
    [TBL] [Abstract][Full Text] [Related]  

  • 11. N-representability-driven reconstruction of the two-electron reduced-density matrix for a real-time time-dependent electronic structure method.
    Jeffcoat DB; DePrince AE
    J Chem Phys; 2014 Dec; 141(21):214104. PubMed ID: 25481126
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Open-shell molecular electronic states from the parametric two-electron reduced-density-matrix method.
    DePrince AE; Mazziotti DA
    J Chem Phys; 2009 Apr; 130(16):164109. PubMed ID: 19405563
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electronic excited-state energies from a linear response theory based on the ground-state two-electron reduced density matrix.
    Greenman L; Mazziotti DA
    J Chem Phys; 2008 Mar; 128(11):114109. PubMed ID: 18361556
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The extended explicitly-correlated second-order approximate coupled-cluster singles and doubles ansatz suitable for response theory.
    Höfener S; Schieschke N; Klopper W; Köhn A
    J Chem Phys; 2019 May; 150(18):184110. PubMed ID: 31091924
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Two-electron reduced density matrices from the anti-Hermitian contracted Schrodinger equation: enhanced energies and properties with larger basis sets.
    Mazziotti DA
    J Chem Phys; 2007 May; 126(18):184101. PubMed ID: 17508786
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Excitation energies with linear response density matrix functional theory along the dissociation coordinate of an electron-pair bond in N-electron systems.
    van Meer R; Gritsenko OV; Baerends EJ
    J Chem Phys; 2014 Jan; 140(2):024101. PubMed ID: 24437859
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular properties from variational reduced-density-matrix theory with three-particle N-representability conditions.
    Gidofalvi G; Mazziotti DA
    J Chem Phys; 2007 Jan; 126(2):024105. PubMed ID: 17228941
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Accurate calculation and modeling of the adiabatic connection in density functional theory.
    Teale AM; Coriani S; Helgaker T
    J Chem Phys; 2010 Apr; 132(16):164115. PubMed ID: 20441266
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Convex-set description of quantum phase transitions in the transverse Ising model using reduced-density-matrix theory.
    Schwerdtfeger CA; Mazziotti DA
    J Chem Phys; 2009 Jun; 130(22):224102. PubMed ID: 19530757
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coupled-cluster and density functional theory studies of the electronic excitation spectra of trans-1,3-butadiene and trans-2-propeniminium.
    Lehtonen O; Sundholm D; Send R; Johansson MP
    J Chem Phys; 2009 Jul; 131(2):024301. PubMed ID: 19603985
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.