These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 23206064)

  • 21. A 10 nN resolution thrust-stand for micro-propulsion devices.
    Chakraborty S; Courtney DG; Shea H
    Rev Sci Instrum; 2015 Nov; 86(11):115109. PubMed ID: 26628174
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Development of a cantilever beam thrust stand for electric propulsion thrusters.
    Zhang H; Li DT; Li H
    Rev Sci Instrum; 2020 Nov; 91(11):115104. PubMed ID: 33261444
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Interlaboratory validation of a hanging pendulum thrust balance for electric propulsion testing.
    Schwertheim A; Rosati Azevedo E; Liu G; Bosch Borràs E; Bianchi L; Knoll A
    Rev Sci Instrum; 2021 Mar; 92(3):034502. PubMed ID: 33820057
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Pulsed thrust measurements using electromagnetic calibration techniques.
    Tang H; Shi C; Zhang X; Zhang Z; Cheng J
    Rev Sci Instrum; 2011 Mar; 82(3):035118. PubMed ID: 21456799
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Measurement of plasma momentum exerted on target by a small helicon plasma thruster and comparison with direct thrust measurement.
    Takahashi K; Komuro A; Ando A
    Rev Sci Instrum; 2015 Feb; 86(2):023505. PubMed ID: 25725840
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A compound pendulum for thrust measurement of micro-Newton thruster.
    Xu H; Gao Y; Mao QB; Ye LW; Hu ZK; Zhang K; Song P; Li Q
    Rev Sci Instrum; 2022 Jun; 93(6):064501. PubMed ID: 35778050
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Design and experimental results of a laser-ignited solid-propellant-fed magnetoplasmadynamic thruster.
    Ou Y; Wu J; Zhang Y
    Rev Sci Instrum; 2020 Jul; 91(7):074501. PubMed ID: 32752859
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Validation of a torsional balance for thrust measurements of Hall effect and microwave-based space propulsion systems.
    Masillo S; Stubbing J; Swar K; Staab D; Garbayo A; Lucca Fabris A
    Rev Sci Instrum; 2022 Nov; 93(11):114501. PubMed ID: 36461544
    [TBL] [Abstract][Full Text] [Related]  

  • 29. An ion thruster internal discharge chamber electrostatic probe diagnostic technique using a high-speed probe positioning system.
    Herman DA; Gallimore AD
    Rev Sci Instrum; 2008 Jan; 79(1):013302. PubMed ID: 18248026
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Dual-axis thrust stand for the direct characterization of electrospray performance.
    Gilpin MR; McGehee WA; Arnold NI; Natisin MR; Holley ZA
    Rev Sci Instrum; 2022 Jun; 93(6):065102. PubMed ID: 35778016
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A high power ion thruster for deep space missions.
    Polk JE; Goebel DM; Snyder JS; Schneider AC; Johnson LK; Sengupta A
    Rev Sci Instrum; 2012 Jul; 83(7):073306. PubMed ID: 22852684
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Extremely small-diameter, high-density, radio frequency, plasma sources and central gas feeding for next-generation electrodeless plasma thrusters.
    Shinohara S; Kuwahara D; Ishigami Y; Horita H; Nakanishi S
    Rev Sci Instrum; 2020 Jul; 91(7):073507. PubMed ID: 32752823
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Thrust stand based on a single point load cell for impulse measurements from plasma thrusters.
    Conde L; Lahoz MD; Grabulosa J; Hernández R; González J; Delgado M; Damba J
    Rev Sci Instrum; 2020 Feb; 91(2):023308. PubMed ID: 32113423
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Inline screw feeding vacuum arc thruster.
    Kronhaus I; Laterza M; Maor Y
    Rev Sci Instrum; 2017 Apr; 88(4):043505. PubMed ID: 28456244
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Comparison of electrostatic fins with piezoelectric impact hammer techniques to extend impulse calibration range of a torsional thrust stand.
    Pancotti AP; Gilpin M; Hilario MS
    Rev Sci Instrum; 2012 Mar; 83(3):035109. PubMed ID: 22462962
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A propellant-free superconducting solenoid thruster driven by geomagnetic field.
    Kuo HW; Pan KL; Lee WL
    J Adv Res; 2021 Feb; 28():269-275. PubMed ID: 33364062
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Comparison study of exhaust plume impingement effects of small mono- and bipropellant thrusters using parallelized DSMC method.
    Lee KH
    PLoS One; 2017; 12(6):e0179351. PubMed ID: 28636625
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Plume influence analysis of small bipropellant thruster on solar array of GEO satellite.
    Lee KH
    PLoS One; 2018; 13(9):e0199667. PubMed ID: 30180165
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Exposure assessment for power frequency electric and magnetic fields.
    Bracken TD
    Am Ind Hyg Assoc J; 1993 Apr; 54(4):165-77. PubMed ID: 8480632
    [TBL] [Abstract][Full Text] [Related]  

  • 40. An experimental setup to study the expansion dynamics of laser blow-off plasma plume in variable transverse magnetic field.
    Kumar A; Chaudhari V; Patel K; George S; Sunil S; Singh RK; Singh R
    Rev Sci Instrum; 2009 Mar; 80(3):033503. PubMed ID: 19334918
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.