These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 23206064)

  • 41. Spatial measurement in rotating magnetic field plasma acceleration method by using two-dimensional scanning instrument and thrust stand.
    Furukawa T; Takizawa K; Yano K; Kuwahara D; Shinohara S
    Rev Sci Instrum; 2018 Apr; 89(4):043505. PubMed ID: 29716344
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The curling probe: A numerical and experimental study. Application to the electron density measurements in an ECR plasma thruster.
    Boni F; Jarrige J; Désangles V; Minea T
    Rev Sci Instrum; 2021 Mar; 92(3):033507. PubMed ID: 33820023
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Experimental study of a low-thrust measurement system for thruster ground tests.
    Gong J; Hou L; Zhao W
    Rev Sci Instrum; 2014 Mar; 85(3):035102. PubMed ID: 24689615
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Interaction of Shock Waves with Water Saturated by Nonreacting or Reacting Gas Bubbles.
    Frolov SM; Avdeev KA; Aksenov VS; Sadykov IA; Shamshin IO; Frolov FS
    Micromachines (Basel); 2022 Sep; 13(9):. PubMed ID: 36144176
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Convergent neutral gas injection using supersonic gas puffing (SSGP) method for propellant feeding system in RF electric propulsion.
    Furukawa T; Ishigami Y; Kuwahara D; Miyazawa J; Shinohara S
    Rev Sci Instrum; 2022 Aug; 93(8):083501. PubMed ID: 36050084
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Recommended Practice for Thrust Measurement in Electric Propulsion Testing.
    Polk JE; Pancotti A; Haag T; King S; Walker M; Blakely J; Ziemer J
    J Propuls Power; 2017 May; 33(3):539-555. PubMed ID: 33510551
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A newly designed decoupling method for micro-Newton thrust measurement.
    Xu H; Mao Q; Gao Y; Wei L; Ding Y; Tu H; Song P; Hu Z; Li Q
    Rev Sci Instrum; 2023 Jan; 94(1):014504. PubMed ID: 36725612
    [TBL] [Abstract][Full Text] [Related]  

  • 48. High precision micro-impulse measurements for micro-thrusters based on torsional pendulum and sympathetic resonance techniques.
    Zhang D; Wu J; Zhang R; Zhang H; He Z
    Rev Sci Instrum; 2013 Dec; 84(12):125113. PubMed ID: 24387474
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Hydrodynamic Analysis-Based Modeling and Experimental Verification of a New Water-Jet Thruster for an Amphibious Spherical Robot.
    Hou X; Guo S; Shi L; Xing H; Liu Y; Liu H; Hu Y; Xia D; Li Z
    Sensors (Basel); 2019 Jan; 19(2):. PubMed ID: 30634717
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Design and test of a simple fast electromagnetic inductive gas valve for planar pulsed inductive plasma thruster.
    Guo D; Cheng M; Li X
    Rev Sci Instrum; 2017 Oct; 88(10):105101. PubMed ID: 29092486
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Numerical comparison of exhaust plume flow behaviors of small monopropellant and bipropellant thrusters.
    Lee KH
    PLoS One; 2017; 12(5):e0176423. PubMed ID: 28481892
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Onset of the magnetized arc and its effect on the momentum of a low-power two-stage pulsed magneto-plasma-dynamic thruster.
    Zolotukhin DB; Daniels KP; Brieda L; Keidar M
    Phys Rev E; 2020 Aug; 102(2-1):021203. PubMed ID: 32942417
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Measurement of axial neutral density profiles in a microwave discharge ion thruster by laser absorption spectroscopy with optical fiber probes.
    Tsukizaki R; Koizumi H; Nishiyama K; Kuninaka H
    Rev Sci Instrum; 2011 Dec; 82(12):123103. PubMed ID: 22225195
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Compact high-speed reciprocating probe system for measurements in a Hall thruster discharge and plume.
    Dannenmayer K; Mazouffre S
    Rev Sci Instrum; 2012 Dec; 83(12):123503. PubMed ID: 23277983
    [TBL] [Abstract][Full Text] [Related]  

  • 55. High-speed dual Langmuir probe.
    Lobbia RB; Gallimore AD
    Rev Sci Instrum; 2010 Jul; 81(7):073503. PubMed ID: 20687718
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Interfacial effect of extremely low frequency electromagnetic fields (EM-ELF) on the vaporization step of carbon dioxide from aqueous solutions of body simulated fluid (SBF).
    Beruto DT; Botter R; Perfumo F; Scaglione S
    Bioelectromagnetics; 2003 May; 24(4):251-61. PubMed ID: 12696085
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Space Electroosmotic Thrusters in Ion Partitioning Soft Nanochannels.
    Zheng J; Jian Y
    Micromachines (Basel); 2021 Jun; 12(7):. PubMed ID: 34209246
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Laser ignition of a cryogenic thruster using a miniaturised Nd:YAG laser.
    Manfletti C; Kroupa G
    Opt Express; 2013 Nov; 21 Suppl 6():A1126-39. PubMed ID: 24514931
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Genotoxic effects of extremely low frequency (ELF) magnetic fields (MF) evaluated by the Tradescantia-micronucleus assay.
    Fatigoni C; Dominici L; Moretti M; Villarini M; Monarca S
    Environ Toxicol; 2005 Dec; 20(6):585-91. PubMed ID: 16302171
    [TBL] [Abstract][Full Text] [Related]  

  • 60. [Evaluation of genotoxic and/or co-genotoxic effects in cells exposed in vitro to extremely-low frequency electromagnetic fields].
    Scassellati Sforzolini G; Moretti M; Villarini M; Fatigoni C; Pasquini R
    Ann Ig; 2004; 16(1-2):321-40. PubMed ID: 15554538
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.