These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. An ultralow noise current amplifier based on superconducting quantum interference device for high sensitivity applications. Granata C; Vettoliere A; Russo M Rev Sci Instrum; 2011 Jan; 82(1):013901. PubMed ID: 21280839 [TBL] [Abstract][Full Text] [Related]
7. Supercurrent reversal in quantum dots. van Dam JA; Nazarov YV; Bakkers EP; De Franceschi S; Kouwenhoven LP Nature; 2006 Aug; 442(7103):667-70. PubMed ID: 16900196 [TBL] [Abstract][Full Text] [Related]
8. Low-noise nano superconducting quantum interference device operating in Tesla magnetic fields. Schwarz T; Nagel J; Wölbing R; Kemmler M; Kleiner R; Koelle D ACS Nano; 2013 Jan; 7(1):844-50. PubMed ID: 23252846 [TBL] [Abstract][Full Text] [Related]
9. Investigation and optimization of low-frequency noise performance in readout electronics of dc superconducting quantum interference device. Zhao J; Zhang Y; Lee YH; Krause HJ Rev Sci Instrum; 2014 May; 85(5):054707. PubMed ID: 24880395 [TBL] [Abstract][Full Text] [Related]
10. Parameter scaling in the decoherent quantum-classical transition for chaotic rf superconducting quantum interference devices. Mao T; Yu Y Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jan; 81(1 Pt 2):016212. PubMed ID: 20365451 [TBL] [Abstract][Full Text] [Related]
11. Optical transmission modules for multi-channel superconducting quantum interference device readouts. Kim JM; Kwon H; Yu KK; Lee YH; Kim K Rev Sci Instrum; 2013 Dec; 84(12):125109. PubMed ID: 24387470 [TBL] [Abstract][Full Text] [Related]
12. An integrated superconductive magnetic nanosensor for high-sensitivity nanoscale applications. Granata C; Esposito E; Vettoliere A; Petti L; Russo M Nanotechnology; 2008 Jul; 19(27):275501. PubMed ID: 21828707 [TBL] [Abstract][Full Text] [Related]
13. Scanning superconducting quantum interference device on a tip for magnetic imaging of nanoscale phenomena. Finkler A; Vasyukov D; Segev Y; Ne'eman L; Lachman EO; Rappaport ML; Myasoedov Y; Zeldov E; Huber ME Rev Sci Instrum; 2012 Jul; 83(7):073702. PubMed ID: 22852696 [TBL] [Abstract][Full Text] [Related]
14. Current-induced SQUID behavior of superconducting Nb nano-rings. Sharon OJ; Shaulov A; Berger J; Sharoni A; Yeshurun Y Sci Rep; 2016 Jun; 6():28320. PubMed ID: 27321733 [TBL] [Abstract][Full Text] [Related]
15. Constant-current supply of 3 ppm stability and resettability; application for a SQUID. Levy B; Greenfield AJ Rev Sci Instrum; 1979 May; 50(5):655. PubMed ID: 18699574 [TBL] [Abstract][Full Text] [Related]
16. Ordering and manipulation of the magnetic moments in large-scale superconducting pi-loop arrays. Hilgenkamp H; Ariando ; Smilde HJ; Blank DH; Rijnders G; Rogalla H; Kirtley JR; Tsuei CC Nature; 2003 Mar; 422(6927):50-3. PubMed ID: 12621428 [TBL] [Abstract][Full Text] [Related]
17. Superconductive quantum interference magnetometer with high sensitivity achieved by an induced resonance. Vettoliere A; Granata C Rev Sci Instrum; 2014 Aug; 85(8):085006. PubMed ID: 25173305 [TBL] [Abstract][Full Text] [Related]
20. Development of high field SQUID magnetometer for magnetization studies up to 7 T and temperatures in the range from 4.2 to 300 K. Nagendran R; Thirumurugan N; Chinnasamy N; Janawadkar MP; Sundar CS Rev Sci Instrum; 2011 Jan; 82(1):015109. PubMed ID: 21280860 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]