These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

65 related articles for article (PubMed ID: 23206137)

  • 1. Life-history evolution and density-dependent growth in experimental populations of yeast.
    Jasmin JN; Zeyl C
    Evolution; 2012 Dec; 66(12):3789-802. PubMed ID: 23206137
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evolution of pleiotropic costs in experimental populations.
    Jasmin JN; Zeyl C
    J Evol Biol; 2013 Jun; 26(6):1363-9. PubMed ID: 23638686
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The yield of experimental yeast populations declines during selection.
    Jasmin JN; Dillon MM; Zeyl C
    Proc Biol Sci; 2012 Nov; 279(1746):4382-8. PubMed ID: 22951743
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Antagonism between sexual and natural selection in experimental populations of Saccharomyces cerevisiae.
    Zeyl C; Curtin C; Karnap K; Beauchamp E
    Evolution; 2005 Oct; 59(10):2109-15. PubMed ID: 16405156
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Experimental tests for an evolutionary trade-off between growth rate and yield in E. coli.
    Novak M; Pfeiffer T; Lenski RE; Sauer U; Bonhoeffer S
    Am Nat; 2006 Aug; 168(2):242-51. PubMed ID: 16874633
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The advantage of sex in evolving yeast populations.
    Zeyl C; Bell G
    Nature; 1997 Jul; 388(6641):465-8. PubMed ID: 9242403
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of pleiotropy in the maintenance of sex in yeast.
    Hill JA; Otto SP
    Genetics; 2007 Mar; 175(3):1419-27. PubMed ID: 17237501
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A positive selection for plasmid loss in Saccharomyces cerevisiae using galactose-inducible growth inhibitory sequences.
    Kawahata M; Amari S; Nishizawa Y; Akada R
    Yeast; 1999 Jan; 15(1):1-10. PubMed ID: 10028180
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evolutionary engineering of multiple-stress resistant Saccharomyces cerevisiae.
    Cakar ZP; Seker UO; Tamerler C; Sonderegger M; Sauer U
    FEMS Yeast Res; 2005 Apr; 5(6-7):569-78. PubMed ID: 15780656
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of glycolytic enzymes and the Crabtree effect in galactose-limited continuous cultures of Saccharomyces cerevisiae.
    Sierkstra LN; Nouwen NP; Verbakel JM; Verrips CT
    Yeast; 1993 Jul; 9(7):787-95. PubMed ID: 8368013
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metabolic flux screening of Saccharomyces cerevisiae single knockout strains on glucose and galactose supports elucidation of gene function.
    Velagapudi VR; Wittmann C; Schneider K; Heinzle E
    J Biotechnol; 2007 Dec; 132(4):395-404. PubMed ID: 17919760
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Carbon source-dependent regulation of cell growth by murine protein kinase C epsilon expression in Saccharomyces cerevisiae.
    Parissenti AM; Villeneuve D; Kirwan-Rhude A; Busch D
    J Cell Physiol; 1999 Feb; 178(2):216-26. PubMed ID: 10048586
    [TBL] [Abstract][Full Text] [Related]  

  • 13. "Ant" and "grasshopper" life-history strategies in Saccharomyces cerevisiae.
    Spor A; Wang S; Dillmann C; de Vienne D; Sicard D
    PLoS One; 2008 Feb; 3(2):e1579. PubMed ID: 18270570
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Physiological characterization of adaptive clones in evolving populations of the yeast, Saccharomyces cerevisiae.
    Adams J; Paquin C; Oeller PW; Lee LW
    Genetics; 1985 Jun; 110(2):173-85. PubMed ID: 3891508
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Overexpression of human UDP-glucose pyrophosphorylase rescues galactose-1-phosphate uridyltransferase-deficient yeast.
    Lai K; Elsas LJ
    Biochem Biophys Res Commun; 2000 May; 271(2):392-400. PubMed ID: 10799308
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improved galactose fermentation of Saccharomyces cerevisiae through inverse metabolic engineering.
    Lee KS; Hong ME; Jung SC; Ha SJ; Yu BJ; Koo HM; Park SM; Seo JH; Kweon DH; Park JC; Jin YS
    Biotechnol Bioeng; 2011 Mar; 108(3):621-31. PubMed ID: 21246509
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Towards a cost effective strategy for cutinase production by a recombinant Saccharomyces cerevisiae: strain physiological aspects.
    Ferreira BS; Calado CR; van Keulen F; Fonseca LP; Cabral JM; da Fonseca MM
    Appl Microbiol Biotechnol; 2003 Mar; 61(1):69-76. PubMed ID: 12658517
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The cost of copy number in a selfish genetic element: the 2-μm plasmid of Saccharomyces cerevisiae.
    Harrison E; Koufopanou V; Burt A; MacLean RC
    J Evol Biol; 2012 Nov; 25(11):2348-56. PubMed ID: 22994599
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The roles of galactitol, galactose-1-phosphate, and phosphoglucomutase in galactose-induced toxicity in Saccharomyces cerevisiae.
    de Jongh WA; Bro C; Ostergaard S; Regenberg B; Olsson L; Nielsen J
    Biotechnol Bioeng; 2008 Oct; 101(2):317-26. PubMed ID: 18421797
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bacterial growth properties at low optical densities.
    Novak M; Pfeiffer T; Ackermann M; Bonhoeffer S
    Antonie Van Leeuwenhoek; 2009 Oct; 96(3):267-74. PubMed ID: 19390987
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.