These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
326 related articles for article (PubMed ID: 23206274)
1. Immunisation of mares with binding domains of toxins A and B of Clostridium difficile elicits serum and colostral antibodies that block toxin binding. Artiushin S; Timoney JF; Fettinger M; Fallon L; Rathgeber R Equine Vet J; 2013 Jul; 45(4):476-80. PubMed ID: 23206274 [TBL] [Abstract][Full Text] [Related]
2. Development of a recombinant toxin fragment vaccine for Clostridium difficile infection. Karczewski J; Zorman J; Wang S; Miezeiewski M; Xie J; Soring K; Petrescu I; Rogers I; Thiriot DS; Cook JC; Chamberlin M; Xoconostle RF; Nahas DD; Joyce JG; Bodmer JL; Heinrichs JH; Secore S Vaccine; 2014 May; 32(24):2812-8. PubMed ID: 24662701 [TBL] [Abstract][Full Text] [Related]
3. A novel fusion protein containing the receptor binding domains of C. difficile toxin A and toxin B elicits protective immunity against lethal toxin and spore challenge in preclinical efficacy models. Tian JH; Fuhrmann SR; Kluepfel-Stahl S; Carman RJ; Ellingsworth L; Flyer DC Vaccine; 2012 Jun; 30(28):4249-58. PubMed ID: 22537987 [TBL] [Abstract][Full Text] [Related]
4. Clostridium difficile associated with acute colitis in mares when their foals are treated with erythromycin and rifampicin for Rhodococcus equi pneumonia. Båverud V; Franklin A; Gunnarsson A; Gustafsson A; Hellander-Edman A Equine Vet J; 1998 Nov; 30(6):482-8. PubMed ID: 9844966 [TBL] [Abstract][Full Text] [Related]
5. Molecular cloning, overexpression in Escherichia coli, and purification of 6x his-tagged C-terminal domain of Clostridium difficile toxins A and B. Letourneur O; Ottone S; Delauzun V; Bastide MC; Foussadier A Protein Expr Purif; 2003 Oct; 31(2):276-85. PubMed ID: 14550648 [TBL] [Abstract][Full Text] [Related]
6. The protective effect of recombinant Lactococcus lactis oral vaccine on a Clostridium difficile-infected animal model. Yang XQ; Zhao YG; Chen XQ; Jiang B; Sun DY BMC Gastroenterol; 2013 Jul; 13():117. PubMed ID: 23865596 [TBL] [Abstract][Full Text] [Related]
7. Detection of A/B toxin and isolation of Clostridium difficile and Clostridium perfringens from foals. Silva RO; Ribeiro MG; Palhares MS; Borges AS; Maranhão RP; Silva MX; Lucas TM; Olivo G; Lobato FC Equine Vet J; 2013 Nov; 45(6):671-5. PubMed ID: 23452044 [TBL] [Abstract][Full Text] [Related]
8. Molecular analysis of Clostridium difficile isolates recovered from horses with diarrhea. Arroyo LG; Staempfli H; Weese JS Vet Microbiol; 2007 Feb; 120(1-2):179-83. PubMed ID: 17112686 [TBL] [Abstract][Full Text] [Related]
9. Biochemical and Immunological Characterization of Truncated Fragments of the Receptor-Binding Domains of C. difficile Toxin A. Huang JH; Shen ZQ; Lien SP; Hsiao KN; Leng CH; Chen CC; Siu LK; Chong PC PLoS One; 2015; 10(8):e0135045. PubMed ID: 26271033 [TBL] [Abstract][Full Text] [Related]
10. Comparison of clinical, microbiologic, and clinicopathologic findings in horses positive and negative for Clostridium difficile infection. Ruby R; Magdesian KG; Kass PH J Am Vet Med Assoc; 2009 Mar; 234(6):777-84. PubMed ID: 19284345 [TBL] [Abstract][Full Text] [Related]
11. Toxin production by and adhesive properties of Clostridium difficile isolated from humans and horses with antibiotic-associated diarrhea. Taha S; Johansson O; Rivera Jonsson S; Heimer D; Krovacek K Comp Immunol Microbiol Infect Dis; 2007 May; 30(3):163-74. PubMed ID: 17239950 [TBL] [Abstract][Full Text] [Related]
12. Real-time PCR and typing of Clostridium difficile isolates colonizing mare-foal pairs. Magdesian KG; Leutenegger CM Vet J; 2011 Oct; 190(1):119-23. PubMed ID: 21035363 [TBL] [Abstract][Full Text] [Related]
13. The recombinant Lactococcus lactis oral vaccine induces protection against C. difficile spore challenge in a mouse model. Guo S; Yan W; McDonough SP; Lin N; Wu KJ; He H; Xiang H; Yang M; Moreira MA; Chang YF Vaccine; 2015 Mar; 33(13):1586-95. PubMed ID: 25698490 [TBL] [Abstract][Full Text] [Related]
14. Serum antibodies in mares and foals to Actinobacillus equuli whole cells, outer membrane proteins, and Aqx toxin. Holyoak GR; Smith CM; Boyette R; Montelongo M; Wray JH; Ayalew S; Duggan VE; Confer AW Vet Immunol Immunopathol; 2007 Aug; 118(3-4):310-6. PubMed ID: 17604847 [TBL] [Abstract][Full Text] [Related]
15. [Investigation of toxin genes of Clostridium difficile strains isolated from hospitalized patients with diarrhoea at Marmara University Hospital]. Deniz U; Ulger N; Aksu B; Karavuş M; Söyletir G Mikrobiyol Bul; 2011 Jan; 45(1):1-10. PubMed ID: 21341153 [TBL] [Abstract][Full Text] [Related]
16. Human monoclonal antibodies directed against toxins A and B prevent Clostridium difficile-induced mortality in hamsters. Babcock GJ; Broering TJ; Hernandez HJ; Mandell RB; Donahue K; Boatright N; Stack AM; Lowy I; Graziano R; Molrine D; Ambrosino DM; Thomas WD Infect Immun; 2006 Nov; 74(11):6339-47. PubMed ID: 16966409 [TBL] [Abstract][Full Text] [Related]
17. Serum anti-toxin B antibody correlates with protection from recurrent Clostridium difficile infection (CDI). Leav BA; Blair B; Leney M; Knauber M; Reilly C; Lowy I; Gerding DN; Kelly CP; Katchar K; Baxter R; Ambrosino D; Molrine D Vaccine; 2010 Jan; 28(4):965-9. PubMed ID: 19941990 [TBL] [Abstract][Full Text] [Related]
18. A DNA vaccine targeting TcdA and TcdB induces protective immunity against Clostridium difficile. Zhang BZ; Cai J; Yu B; Hua Y; Lau CC; Kao RY; Sze KH; Yuen KY; Huang JD BMC Infect Dis; 2016 Oct; 16(1):596. PubMed ID: 27770789 [TBL] [Abstract][Full Text] [Related]
19. Recombinant antigens based on toxins A and B of Clostridium difficile that evoke a potent toxin-neutralising immune response. Maynard-Smith M; Ahern H; McGlashan J; Nugent P; Ling R; Denton H; Coxon R; Landon J; Roberts A; Shone C Vaccine; 2014 Feb; 32(6):700-5. PubMed ID: 24342251 [TBL] [Abstract][Full Text] [Related]