These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 23206317)

  • 21. Increasing surface band gap of Cu(In,Ga)Se2 thin films by post depositing an In-Ga-Se thin layer.
    Tan XH; Ye SL; Liu X
    Opt Express; 2011 Mar; 19(7):6609-15. PubMed ID: 21451688
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Non-antireflective scheme for efficiency enhancement of Cu(In,Ga)Se2 nanotip array solar cells.
    Liao YK; Wang YC; Yen YT; Chen CH; Hsieh DH; Chen SC; Lee CY; Lai CC; Kuo WC; Juang JY; Wu KH; Cheng SJ; Lai CH; Lai FI; Kuo SY; Kuo HC; Chueh YL
    ACS Nano; 2013 Aug; 7(8):7318-29. PubMed ID: 23906340
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cu(In,Ga)(S,Se)₂ thin film solar cell with 10.7% conversion efficiency obtained by selenization of the Na-doped spray-pyrolyzed sulfide precursor film.
    Septina W; Kurihara M; Ikeda S; Nakajima Y; Hirano T; Kawasaki Y; Harada T; Matsumura M
    ACS Appl Mater Interfaces; 2015 Apr; 7(12):6472-9. PubMed ID: 25774908
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A facile chemical-mechanical polishing lift-off transfer process toward large scale Cu(In,Ga)Se2 thin-film solar cells on arbitrary substrates.
    Tseng KC; Yen YT; Thomas SR; Tsai HW; Hsu CH; Tsai WC; Shen CH; Shieh JM; Wang ZM; Chueh YL
    Nanoscale; 2016 Mar; 8(9):5181-8. PubMed ID: 26878109
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Preparation of monolithic cu(In0.7Ga0.3)Se2 nanopowders and subsequent fabrication of sintered CIGS films.
    Song BG; Jung JH; Bae GN; Park HH; Park JK; Cho SH
    J Nanosci Nanotechnol; 2013 Sep; 13(9):6042-51. PubMed ID: 24205596
    [TBL] [Abstract][Full Text] [Related]  

  • 26. High-gravity-assisted pulsed laser ablation system for the fabrication of functionally graded material thin film.
    Nishiyama T; Morinaga S; Nagayama K
    Rev Sci Instrum; 2009 Mar; 80(3):033904. PubMed ID: 19334931
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Crystalline Engineering Toward Large-Scale High-Efficiency Printable Cu(In,Ga)Se
    Chen SC; She NZ; Wu KH; Chen YZ; Lin WS; Li JX; Lai FI; Juang JY; Luo CW; Cheng LT; Hsieh TP; Kuo HC; Chueh YL
    ACS Appl Mater Interfaces; 2017 Apr; 9(16):14006-14012. PubMed ID: 28281352
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Improved efficiency of a large-area Cu(In,Ga)Se₂ solar cell by a nontoxic hydrogen-assisted solid Se vapor selenization process.
    Wu TT; Hu F; Huang JH; Chang CH; Lai CC; Yen YT; Huang HY; Hong HF; Wang ZM; Shen CH; Shieh JM; Chueh YL
    ACS Appl Mater Interfaces; 2014 Apr; 6(7):4842-9. PubMed ID: 24571825
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Synthesis of ligand-free CZTS nanoparticles via a facile hot injection route.
    Mirbagheri N; Engberg S; Crovetto A; Simonsen SB; Hansen O; Lam YM; Schou J
    Nanotechnology; 2016 May; 27(18):185603. PubMed ID: 27005863
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Heteroepitaxial Cu2O thin film solar cell on metallic substrates.
    Wee SH; Huang PS; Lee JK; Goyal A
    Sci Rep; 2015 Nov; 5():16272. PubMed ID: 26541499
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A non-selenization technology by co-sputtering deposition for solar cell applications.
    Jheng BT; Liu PT; Wu MC; Shieh HP
    Opt Lett; 2012 Jul; 37(13):2760-2. PubMed ID: 22743520
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Facile Growth of Cu2ZnSnS4 Thin-Film by One-Step Pulsed Hybrid Electrophoretic and Electroplating Deposition.
    Tsai HW; Chen CW; Thomas SR; Hsu CH; Tsai WC; Chen YZ; Wang YC; Wang ZM; Hong HF; Chueh YL
    Sci Rep; 2016 Feb; 6():19102. PubMed ID: 26902556
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Femtosecond Laser Fabrication of Micro and Nano-Structures on CIGS/ITO Bilayer Films for Thin-Film Solar Cells.
    Yang H; Jiang G; Wang W; Mei X
    Materials (Basel); 2021 May; 14(9):. PubMed ID: 34066422
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Synthesis and characterization of gallium colloidal nanoparticles.
    Meléndrez MF; Cárdenas G; Arbiol J
    J Colloid Interface Sci; 2010 Jun; 346(2):279-87. PubMed ID: 20378122
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Electrophoretic deposition of TiO2 nanoparticles using organic dyes.
    Sun Y; Ata MS; Zhitomirsky I
    J Colloid Interface Sci; 2012 Mar; 369(1):395-401. PubMed ID: 22204967
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Optical evidence for reactive processes when embedding Cu nanoparticles in Al(2)O(3) by pulsed laser deposition.
    Serna R; Suárez-García A; Afonso CN; Babonneau D
    Nanotechnology; 2006 Sep; 17(18):4588-93. PubMed ID: 21727581
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The effects of Na on high pressure phases of CuIn(0.5)Ga(0.5)Se(2) from ab initio calculation.
    Pluengphon P; Bovornratanaraks T; Vannarat S; Pinsook U
    J Phys Condens Matter; 2012 Mar; 24(9):095802. PubMed ID: 22322896
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The electrophoretic deposition of TiB
    Teimouri E; Darabi E; Hantehzadeh M; Khajehnezhad A
    Microsc Res Tech; 2022 Jun; 85(6):2140-2151. PubMed ID: 35150034
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Study on the modified surface layers of the CIGS thin films by Raman spectra].
    Liu W; Sun Y; Li FY; He Q; Li CJ; Tian JG
    Guang Pu Xue Yu Guang Pu Fen Xi; 2007 Apr; 27(4):716-9. PubMed ID: 17608182
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effects of organic ligands, electrostatic and magnetic interactions in formation of colloidal and interfacial inorganic nanostructures.
    Khomutov GB; Koksharov YA
    Adv Colloid Interface Sci; 2006 Sep; 122(1-3):119-47. PubMed ID: 16887093
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.