These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 23206334)

  • 1. Recovery of nonwetting characteristics by surface modification of gallium-based liquid metal droplets using hydrochloric acid vapor.
    Kim D; Thissen P; Viner G; Lee DW; Choi W; Chabal YJ; Lee JB
    ACS Appl Mater Interfaces; 2013 Jan; 5(1):179-85. PubMed ID: 23206334
    [TBL] [Abstract][Full Text] [Related]  

  • 2. PDMS based coplanar microfluidic channels for the surface reduction of oxidized Galinstan.
    Li G; Parmar M; Kim D; Lee JB; Lee DW
    Lab Chip; 2014 Jan; 14(1):200-9. PubMed ID: 24193151
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surface Modification with Gallium Coating as Nonwetting Surfaces for Gallium-Based Liquid Metal Droplet Manipulation.
    Chen Z; Lee JB
    ACS Appl Mater Interfaces; 2019 Sep; 11(38):35488-35495. PubMed ID: 31483593
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Wet chemical functionalization of III-V semiconductor surfaces: alkylation of gallium arsenide and gallium nitride by a Grignard reaction sequence.
    Peczonczyk SL; Mukherjee J; Carim AI; Maldonado S
    Langmuir; 2012 Mar; 28(10):4672-82. PubMed ID: 22372474
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cost-effective surface modification for Galinstan® lyophobicity.
    Kadlaskar SS; Yoo JH; Abhijeet ; Lee JB; Choi W
    J Colloid Interface Sci; 2017 Apr; 492():33-40. PubMed ID: 28068542
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Corrosion resistant performances of alkanoic and phosphonic acids derived self-assembled monolayers on magnesium alloy AZ31 by vapor-phase method.
    Ishizaki T; Okido M; Masuda Y; Saito N; Sakamoto M
    Langmuir; 2011 May; 27(10):6009-17. PubMed ID: 21504153
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis and Transformations of Room-Temperature Liquid Metal Interfaces - A Closer Look through Interfacial Tension.
    Handschuh-Wang S; Chen Y; Zhu L; Zhou X
    Chemphyschem; 2018 Jul; 19(13):1584-1592. PubMed ID: 29539243
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conversion of Polymer Surfaces into Nonwetting Substrates for Liquid Metal Applications.
    Babu S; Dousti B; Lee GS; Lee JB
    Langmuir; 2021 Jul; 37(27):8139-8147. PubMed ID: 34180680
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tuning surface wettability of In(x)Ga(1-x)N nanotip arrays by phosphonic acid modification and photoillumination.
    Su R; Liu H; Kong T; Song Q; Li N; Jin G; Cheng G
    Langmuir; 2011 Nov; 27(21):13220-5. PubMed ID: 21951060
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An oxidized liquid metal-based microfluidic platform for tunable electronic device applications.
    Li G; Parmar M; Lee DW
    Lab Chip; 2015 Feb; 15(3):766-75. PubMed ID: 25431832
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electric Actuation of Liquid Metal Droplets in Acidified Aqueous Electrolyte.
    Handschuh-Wang S; Chen Y; Zhu L; Gan T; Zhou X
    Langmuir; 2019 Jan; 35(2):372-381. PubMed ID: 30575374
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Liquid phase formation of alkyl- and perfluoro-phosphonic acid derived monolayers on magnesium alloy AZ31 and their chemical properties.
    Ishizaki T; Teshima K; Masuda Y; Sakamoto M
    J Colloid Interface Sci; 2011 Aug; 360(1):280-8. PubMed ID: 21565354
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Method to Reduce the Contact Resistivity between Galinstan and a Copper Electrode for Electrical Connection in Flexible Devices.
    Sato T; Yamagishi K; Hashimoto M; Iwase E
    ACS Appl Mater Interfaces; 2021 Apr; 13(15):18247-18254. PubMed ID: 33830734
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Flexible and Stretchable Liquid Metal Electrodes Working at Sub-Zero Temperature and Their Applications.
    Xiao P; Kim JH; Seo S
    Materials (Basel); 2021 Aug; 14(15):. PubMed ID: 34361506
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A galinstan-based inkjet printing system for highly stretchable electronics with self-healing capability.
    Li G; Wu X; Lee DW
    Lab Chip; 2016 Apr; 16(8):1366-73. PubMed ID: 26987310
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Galvanic replacement of liquid metal galinstan with Pt for the synthesis of electrocatalytically active nanomaterials.
    Oloye O; Tang C; Du A; Will G; O'Mullane AP
    Nanoscale; 2019 May; 11(19):9705-9715. PubMed ID: 31066435
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surface engineering of poly(dimethylsiloxane) microfluidic devices using transition metal sol-gel chemistry.
    Roman GT; Culbertson CT
    Langmuir; 2006 Apr; 22(9):4445-51. PubMed ID: 16618201
    [TBL] [Abstract][Full Text] [Related]  

  • 19. X-ray photoelectron spectroscopy study of the passivation of NiAl(100) by water vapor.
    Cai N; Liu Q; Tong X; Zhou G
    Langmuir; 2014 Jan; 30(3):774-83. PubMed ID: 24417205
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Activating the Growth of High Surface Area Alumina Using a Liquid Galinstan Alloy.
    Zoellner B; Hou F; Carbone A; Kiether W; Markham K; Cuomo J; Maggard PA
    ACS Omega; 2018 Dec; 3(12):16409-16415. PubMed ID: 31458277
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.