BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 23206531)

  • 1. Alumina-supported oxime for the degradation of sarin and diethylchlorophosphate.
    Verma AK; Srivastava AK; Singh B; Shah D; Shrivastava S; Shinde CK
    Chemosphere; 2013 Feb; 90(8):2254-60. PubMed ID: 23206531
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetics of adsorptive removal of DEClP and GB on impregnated Al2O3 nanoparticles.
    Saxena A; Srivastava AK; Singh B; Gupta AK; Suryanarayana MV; Pandey P
    J Hazard Mater; 2010 Mar; 175(1-3):795-801. PubMed ID: 19926215
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Facile hydrolysis-based chemical destruction of the warfare agents VX, GB, and HD by alumina-supported fluoride reagents.
    Gershonov E; Columbus I; Zafrani Y
    J Org Chem; 2009 Jan; 74(1):329-38. PubMed ID: 19053582
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adsorption of diethylchlorophosphate on metal oxide nanoparticles under static conditions.
    Saxena A; Mangal H; Rai PK; Rawat AS; Kumar V; Datta M
    J Hazard Mater; 2010 Aug; 180(1-3):566-76. PubMed ID: 20452723
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanocrystalline zinc oxide for the decontamination of sarin.
    Mahato TH; Prasad GK; Singh B; Acharya J; Srivastava AR; Vijayaraghavan R
    J Hazard Mater; 2009 Jun; 165(1-3):928-32. PubMed ID: 19121895
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vitro reactivation potency of novel symmetrical bis-pyridinium oximes for electric eel acetylcholinesterase inhibited by nerve agent sarin.
    Acharya J; Dubey DK; Kaushik MP
    Toxicol In Vitro; 2011 Dec; 25(8):2135-9. PubMed ID: 21745562
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydroxy oximes as organophosphorus nerve agent sensors.
    Dale TJ; Rebek J
    Angew Chem Int Ed Engl; 2009; 48(42):7850-2. PubMed ID: 19757467
    [No Abstract]   [Full Text] [Related]  

  • 8. A common mechanism for resistance to oxime reactivation of acetylcholinesterase inhibited by organophosphorus compounds.
    Maxwell DM; Brecht KM; Sweeney RE
    Chem Biol Interact; 2013 Mar; 203(1):72-6. PubMed ID: 22982773
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enzyme-kinetic investigation of different sarin analogues reacting with human acetylcholinesterase and butyrylcholinesterase.
    Bartling A; Worek F; Szinicz L; Thiermann H
    Toxicology; 2007 Apr; 233(1-3):166-72. PubMed ID: 16904809
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Removal of sulphur mustard, sarin and simulants on impregnated silica nanoparticles.
    Saxena A; Srivastava AK; Singh B; Goyal A
    J Hazard Mater; 2012 Apr; 211-212():226-32. PubMed ID: 21871717
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetics of adsorption of 2-chloroethylethylsulphide on Al2O3 nanoparticles with and without impregnants.
    Saxena A; Srivastava AK; Sharma A; Singh B
    J Hazard Mater; 2009 Sep; 169(1-3):419-27. PubMed ID: 19395156
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interaction of pentylsarin analogues with human acetylcholinesterase: a kinetic study.
    Worek F; Herkert NM; Koller M; Aurbek N; Thiermann H
    Toxicol Lett; 2009 Jun; 187(2):119-23. PubMed ID: 19429253
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The reactivity of quaternary ammonium- versus potassium-fluorides supported on metal oxides: paving the way to an instantaneous detoxification of chemical warfare agents.
    Zafrani Y; Yehezkel L; Goldvaser M; Marciano D; Waysbort D; Gershonov E; Columbus I
    Org Biomol Chem; 2011 Dec; 9(24):8445-51. PubMed ID: 22042427
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Revisiting the reactivity of oximate alpha-nucleophiles with electrophilic phosphorus centers. Relevance to detoxification of sarin, soman and DFP under mild conditions.
    Terrier F; Rodriguez-Dafonte P; Le Guével E; Moutiers G
    Org Biomol Chem; 2006 Dec; 4(23):4352-63. PubMed ID: 17102881
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Degradation of nerve agents by an organophosphate-degrading agent (OpdA).
    Dawson RM; Pantelidis S; Rose HR; Kotsonis SE
    J Hazard Mater; 2008 Sep; 157(2-3):308-14. PubMed ID: 18258361
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Energetics and dynamics of the reactions of O(3P) with dimethyl methylphosphonate and sarin.
    Conforti PF; Braunstein M; Dodd JA
    J Phys Chem A; 2009 Dec; 113(49):13752-61. PubMed ID: 19877689
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Formation of pyrophosphate-like adducts from nerve agents sarin, soman and cyclosarin in phosphate buffer: implications for analytical and toxicological investigations.
    Gäb J; John H; Blum MM
    Toxicol Lett; 2011 Jan; 200(1-2):34-40. PubMed ID: 20979985
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A comparison of the efficacy of a bispyridinium oxime--1,4-bis-(2-hydroxyiminomethylpyridinium) butane dibromide and currently used oximes to reactivate sarin, tabun or cyclosarin-inhibited acetylcholinesterase by in vitro methods.
    Kuca K; Cabal J; Kassa J
    Pharmazie; 2004 Oct; 59(10):795-8. PubMed ID: 15544060
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A comparison of the potency of a novel bispyridinium oxime K203 and currently available oximes (obidoxime, HI-6) to counteract the acute neurotoxicity of sarin in rats.
    Kassa J; Misik J; Karasova JZ
    Basic Clin Pharmacol Toxicol; 2012 Nov; 111(5):333-8. PubMed ID: 22536919
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nonquaternary reactivators for organophosphate-inhibited cholinesterases.
    Kalisiak J; Ralph EC; Cashman JR
    J Med Chem; 2012 Jan; 55(1):465-74. PubMed ID: 22206546
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.