These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 23206609)

  • 1. Computer-aided detection of lung nodules by SVM based on 3D matrix patterns.
    Wang Q; Kang W; Wu C; Wang B
    Clin Imaging; 2013; 37(1):62-9. PubMed ID: 23206609
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computer-aided detection of solid lung nodules in lossy compressed multidetector computed tomography chest exams.
    Raffy P; Gaudeau Y; Miller DP; Moureaux JM; Castellino RA
    Acad Radiol; 2006 Oct; 13(10):1194-203. PubMed ID: 16979068
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A computerized scheme for lung nodule detection in multiprojection chest radiography.
    Guo W; Li Q; Boyce SJ; McAdams HP; Shiraishi J; Doi K; Samei E
    Med Phys; 2012 Apr; 39(4):2001-12. PubMed ID: 22482621
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computer-aided detection of lung nodules: false positive reduction using a 3D gradient field method and 3D ellipsoid fitting.
    Ge Z; Sahiner B; Chan HP; Hadjiiski LM; Cascade PN; Bogot N; Kazerooni EA; Wei J; Zhou C
    Med Phys; 2005 Aug; 32(8):2443-54. PubMed ID: 16193773
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A new computationally efficient CAD system for pulmonary nodule detection in CT imagery.
    Messay T; Hardie RC; Rogers SK
    Med Image Anal; 2010 Jun; 14(3):390-406. PubMed ID: 20346728
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Refinement of lung nodule candidates based on local geometric shape analysis and Laplacian of Gaussian kernels.
    Saien S; Hamid Pilevar A; Abrishami Moghaddam H
    Comput Biol Med; 2014 Nov; 54():188-98. PubMed ID: 25303113
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A supervised 'lesion-enhancement' filter by use of a massive-training artificial neural network (MTANN) in computer-aided diagnosis (CAD).
    Suzuki K
    Phys Med Biol; 2009 Sep; 54(18):S31-45. PubMed ID: 19687563
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of computer-aided diagnosis (CAD) software for the detection of lung nodules on multidetector row computed tomography (MDCT): JAFROC study for the improvement in radiologists' diagnostic accuracy.
    Hirose T; Nitta N; Shiraishi J; Nagatani Y; Takahashi M; Murata K
    Acad Radiol; 2008 Dec; 15(12):1505-12. PubMed ID: 19000867
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computer-aided detection of lung nodules using outer surface features.
    Demir Ö; Yılmaz Çamurcu A
    Biomed Mater Eng; 2015; 26 Suppl 1():S1213-22. PubMed ID: 26405880
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Solid, part-solid, or non-solid?: classification of pulmonary nodules in low-dose chest computed tomography by a computer-aided diagnosis system.
    Jacobs C; van Rikxoort EM; Scholten ET; de Jong PA; Prokop M; Schaefer-Prokop C; van Ginneken B
    Invest Radiol; 2015 Mar; 50(3):168-73. PubMed ID: 25478740
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computer-aided lung nodule recognition by SVM classifier based on combination of random undersampling and SMOTE.
    Sui Y; Wei Y; Zhao D
    Comput Math Methods Med; 2015; 2015():368674. PubMed ID: 25977704
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitative nodule detection in low dose chest CT scans: new template modeling and evaluation for CAD system design.
    Farag AA; El-Baz A; Gimelfarb G; El-Ghar MA; Eldiasty T
    Med Image Comput Comput Assist Interv; 2005; 8(Pt 1):720-8. PubMed ID: 16685910
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Semi-automatic volumetric measurement of lung cancer using multi-detector CT effects of nodule characteristics.
    Iwano S; Okada T; Koike W; Matsuo K; Toya R; Yamazaki M; Ito S; Ito J; Naganwa S
    Acad Radiol; 2009 Oct; 16(10):1179-86. PubMed ID: 19524456
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Automated system for lung nodules classification based on wavelet feature descriptor and support vector machine.
    Madero Orozco H; Vergara Villegas OO; Cruz Sánchez VG; Ochoa Domínguez Hde J; Nandayapa Alfaro Mde J
    Biomed Eng Online; 2015 Feb; 14():9. PubMed ID: 25888834
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A computer-aided diagnosis system for detection of lung nodules in chest radiographs with an evaluation on a public database.
    Schilham AM; van Ginneken B; Loog M
    Med Image Anal; 2006 Apr; 10(2):247-58. PubMed ID: 16293441
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High performance lung nodule detection schemes in CT using local and global information.
    Guo W; Li Q
    Med Phys; 2012 Aug; 39(8):5157-68. PubMed ID: 22894441
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of CAD on radiologists' detection of lung nodules on thoracic CT scans: analysis of an observer performance study by nodule size.
    Sahiner B; Chan HP; Hadjiiski LM; Cascade PN; Kazerooni EA; Chughtai AR; Poopat C; Song T; Frank L; Stojanovska J; Attili A
    Acad Radiol; 2009 Dec; 16(12):1518-30. PubMed ID: 19896069
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel approach to nodule feature optimization on thin section thoracic CT.
    Samala R; Moreno W; You Y; Qian W
    Acad Radiol; 2009 Apr; 16(4):418-27. PubMed ID: 19268853
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computer-aided diagnostic scheme for distinction between benign and malignant nodules in thoracic low-dose CT by use of massive training artificial neural network.
    Suzuki K; Li F; Sone S; Doi K
    IEEE Trans Med Imaging; 2005 Sep; 24(9):1138-50. PubMed ID: 16156352
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 3D shape analysis to reduce false positives for lung nodule detection systems.
    Filho AOC; Silva AC; de Paiva AC; Nunes RA; Gattass M
    Med Biol Eng Comput; 2017 Aug; 55(8):1199-1213. PubMed ID: 27752930
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.