These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

81 related articles for article (PubMed ID: 2320668)

  • 1. Use of Gaussian beam model in predicting SAR distributions from current sheet applicators.
    Lumori ML; Hand JW; Gopal MK; Cetas TC
    Phys Med Biol; 1990 Mar; 35(3):387-97. PubMed ID: 2320668
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Theoretical comparison of the SAR distributions from arrays of modified current sheet applicators with that of lucite cone applicators using Gaussian beam modelling.
    Rietveld PJ; Stakenborg J; Cetas TC; Lumori ML; Van Rhoon GC
    Int J Hyperthermia; 2001; 17(1):82-96. PubMed ID: 11212882
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The use of a current sheet applicator array for superficial hyperthermia: incoherent versus coherent operation.
    Prior MV; Lumori ML; Hand JW; Lamaitre G; Schneider CJ; van Dijk JD
    IEEE Trans Biomed Eng; 1995 Jul; 42(7):694-8. PubMed ID: 7622152
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effectiveness of the Gaussian beam model in predicting SAR distributions from the lucite cone applicator.
    Rietveld PJ; Lumori ML; Hand JW; Prior MV; Van der Zee J; Van Rhoon GC
    Int J Hyperthermia; 1998; 14(3):293-308. PubMed ID: 9679709
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative evaluation of 2 x 2 arrays of Lucite cone applicators in flat layered phantoms using Gaussian-beam-predicted and thermographically measured SAR distributions.
    Rietveld PJ; Lumori ML; van der Zee J; van Rhoon GC
    Phys Med Biol; 1998 Aug; 43(8):2207-20. PubMed ID: 9725599
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Current sheet applicator arrays for superficial hyperthermia of chestwall lesions.
    Gopal MK; Hand JW; Lumori ML; Alkhairi S; Paulsen KD; Cetas TC
    Int J Hyperthermia; 1992; 8(2):227-40. PubMed ID: 1573312
    [TBL] [Abstract][Full Text] [Related]  

  • 7. FDTD simulations of Clini-Therm applicators on inhomogeneous planar tissue models.
    Chan KW; McDougall JA; Chou CK
    Int J Hyperthermia; 1995; 11(6):809-20. PubMed ID: 8586902
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regional hyperthermia of the abdomen, a pilot study towards the treatment of peritoneal carcinomatosis.
    Beck M; Ghadjar P; Weihrauch M; Burock S; Budach V; Nadobny J; Sehouli J; Wust P
    Radiat Oncol; 2015 Jul; 10():157. PubMed ID: 26223271
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhancing the properties of beam forming bolus in hyperthermia: numerical simulation and empirical verification.
    Aghayan SA; Sardari D; Mahdavi SR; Mohammadi M
    Australas Phys Eng Sci Med; 2014 Dec; 37(4):691-703. PubMed ID: 25318411
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Absorbed power distributions from single or multiple waveguide applicators during microwave hyperthermia.
    Antolini R; Cerri G; Cristoforetti L; De Leo R
    Phys Med Biol; 1986 Sep; 31(9):1005-19. PubMed ID: 3774873
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Two 27 MHz Simple Inductive Loops, as Hyperthermia Treatment Applicators: Theoretical Analysis and Development.
    Kouloulias V; Karanasiou I; Koutsoupidou M; Matsopoulos G; Kouvaris J; Uzunoglu N
    Comput Math Methods Med; 2015; 2015():751035. PubMed ID: 26649070
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computer-aided design of two-dimensional electric-type hyperthermia applicators using the finite-difference time-domain method.
    Shaw JA; Durney CH; Christensen DA
    IEEE Trans Biomed Eng; 1991 Sep; 38(9):861-70. PubMed ID: 1743734
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Body conformal antennas for superficial hyperthermia: the impact of bending contact flexible microstrip applicators on their electromagnetic behavior.
    Correia D; Kok HP; de Greef M; Bel A; van Wieringen N; Crezee J
    IEEE Trans Biomed Eng; 2009 Dec; 56(12):2917-26. PubMed ID: 19695983
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Theoretical investigation of measurement procedures for the quality assurance of superficial hyperthermia applicators.
    Samaras T; van Rhoon GC; Sahalos JN
    Int J Hyperthermia; 2002; 18(5):416-25. PubMed ID: 12227928
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design of RF needle applicators for optimum SAR distributions in irregularly shaped tumors.
    Zhu XL; Gandhi OP
    IEEE Trans Biomed Eng; 1988 May; 35(5):382-8. PubMed ID: 3397088
    [No Abstract]   [Full Text] [Related]  

  • 16. Spatial temperature control with a 27 MHz current source interstitial hyperthermia system.
    Kaatee RS; Crezee H; Kanis BP; Lagendijk JJ; Levendag PC; Visser AG
    Int J Radiat Oncol Biol Phys; 1997 Jan; 37(1):189-97. PubMed ID: 9054895
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of practical layered dielectric loads on SAR patterns from dual concentric conductor microstrip antennas.
    Rossetto F; Stauffer PR; Manfrini V; Diederich CJ; Biffi Gentili G
    Int J Hyperthermia; 1998; 14(6):553-71. PubMed ID: 9886662
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SAR deposition by curved CFMA-434 applicators for superficial hyperthermia: Measurements and simulations.
    Petra Kok H; Correia D; De Greef M; Van Stam G; Bel A; Crezee J
    Int J Hyperthermia; 2010; 26(2):171-84. PubMed ID: 20146571
    [TBL] [Abstract][Full Text] [Related]  

  • 19. SAR characteristics of the Sigma-60-Ellipse applicator.
    Fatehi D; van Rhoon GC
    Int J Hyperthermia; 2008 Jun; 24(4):347-56. PubMed ID: 18465419
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Specific absorption rates in simulated tissue media for a 10 x 10 cm 915-MHz waveguide applicator.
    Denman DL; Kolasa MJ; Elson HR; Aron BS; Kereiakes JG
    Med Phys; 1987; 14(4):681-6. PubMed ID: 3627011
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.