BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 23208052)

  • 21. Hyaluronan-based dissolving microneedles with high antigen content for intradermal vaccination: Formulation, physicochemical characterization and immunogenicity assessment.
    Leone M; Priester MI; Romeijn S; Nejadnik MR; Mönkäre J; O'Mahony C; Jiskoot W; Kersten G; Bouwstra JA
    Eur J Pharm Biopharm; 2019 Jan; 134():49-59. PubMed ID: 30453025
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A boosting skin vaccination with dissolving microneedle patch encapsulating M2e vaccine broadens the protective efficacy of conventional influenza vaccines.
    Zhu W; Pewin W; Wang C; Luo Y; Gonzalez GX; Mohan T; Prausnitz MR; Wang BZ
    J Control Release; 2017 Sep; 261():1-9. PubMed ID: 28642154
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Transdermal delivery of vaccines - Recent progress and critical issues.
    Ita K
    Biomed Pharmacother; 2016 Oct; 83():1080-1088. PubMed ID: 27544552
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Improved immunogenicity of individual influenza vaccine components delivered with a novel dissolving microneedle patch stable at room temperature.
    Vassilieva EV; Kalluri H; McAllister D; Taherbhai MT; Esser ES; Pewin WP; Pulit-Penaloza JA; Prausnitz MR; Compans RW; Skountzou I
    Drug Deliv Transl Res; 2015 Aug; 5(4):360-71. PubMed ID: 25895053
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cutaneous vaccination: antigen delivery into or onto the skin.
    Weniger BG; Glenn GM
    Vaccine; 2013 Jul; 31(34):3389-91. PubMed ID: 23684830
    [No Abstract]   [Full Text] [Related]  

  • 26. Compositional optimization and safety assessment of a hydrogel patch as a transcutaneous immunization device.
    Matsuo K; Ishii Y; Quan YS; Kamiyama F; Asada H; Mukai Y; Okada N; Nakagawa S
    Biol Pharm Bull; 2011; 34(12):1835-40. PubMed ID: 22130239
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Emerging skin-targeted drug delivery strategies to engineer immunity: A focus on infectious diseases.
    Korkmaz E; Balmert SC; Carey CD; Erdos G; Falo LD
    Expert Opin Drug Deliv; 2021 Feb; 18(2):151-167. PubMed ID: 32924651
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Characterization of transcutaneous protein delivery by a hydrogel patch in animal, human, and tissue-engineered skin models.
    Matsuo K; Ishii Y; Quan YS; Kamiyama F; Mukai Y; Okada N; Nakagawa S
    Biol Pharm Bull; 2011; 34(4):586-9. PubMed ID: 21467651
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Dissolving Microneedle Arrays for Transdermal Delivery of Amphiphilic Vaccines.
    An M; Liu H
    Small; 2017 Jul; 13(26):. PubMed ID: 28544329
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Transcutaneous vaccines: novel advances in technology and delivery for overcoming the barriers.
    Li N; Peng LH; Chen X; Nakagawa S; Gao JQ
    Vaccine; 2011 Aug; 29(37):6179-90. PubMed ID: 21740946
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Understanding the basis of transcutaneous vaccine delivery.
    Gamazo C; Pastor Y; Larrañeta E; Berzosa M; Irache JM; Donnelly RF
    Ther Deliv; 2019 Jan; 10(1):63-80. PubMed ID: 30730825
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Development of PLGA nanoparticle loaded dissolving microneedles and comparison with hollow microneedles in intradermal vaccine delivery.
    Mönkäre J; Pontier M; van Kampen EEM; Du G; Leone M; Romeijn S; Nejadnik MR; O'Mahony C; Slütter B; Jiskoot W; Bouwstra JA
    Eur J Pharm Biopharm; 2018 Aug; 129():111-121. PubMed ID: 29803720
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [New routes of administration: epidermal, transcutaneous mucosal ways of vaccination].
    Denis F; Alain S; Ploy MC
    Med Sci (Paris); 2007 Apr; 23(4):379-85. PubMed ID: 17433227
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Development of a transcutaneous vaccination system using a hydrogel patch].
    Ishii Y; Okada N; Nakagawa S
    Nihon Rinsho; 2008 Oct; 66(10):1848-50. PubMed ID: 18939480
    [No Abstract]   [Full Text] [Related]  

  • 35. Vaccination with influenza hemagglutinin-loaded ceramic nanoporous microneedle arrays induces protective immune responses.
    Schepens B; Vos PJ; Saelens X; van der Maaden K
    Eur J Pharm Biopharm; 2019 Mar; 136():259-266. PubMed ID: 30731115
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The potential effects of introducing microneedle patch vaccines into routine vaccine supply chains.
    Wedlock PT; Mitgang EA; Elsheikh F; Leonard J; Bakal J; Welling J; Crawford J; Assy E; Magadzire BP; Bechtel R; DePasse JV; Siegmund SS; Brown ST; Lee BY
    Vaccine; 2019 Jan; 37(4):645-651. PubMed ID: 30578088
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Long-term stability of influenza vaccine in a dissolving microneedle patch.
    Mistilis MJ; Joyce JC; Esser ES; Skountzou I; Compans RW; Bommarius AS; Prausnitz MR
    Drug Deliv Transl Res; 2017 Apr; 7(2):195-205. PubMed ID: 26926241
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Delivery of antigens used for vaccination: recent advances and challenges.
    Scherliess R
    Ther Deliv; 2011 Oct; 2(10):1351-68. PubMed ID: 22826888
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Microneedle patch delivery to the skin of virus-like particles containing heterologous M2e extracellular domains of influenza virus induces broad heterosubtypic cross-protection.
    Kim MC; Lee JW; Choi HJ; Lee YN; Hwang HS; Lee J; Kim C; Lee JS; Montemagno C; Prausnitz MR; Kang SM
    J Control Release; 2015 Jul; 210():208-16. PubMed ID: 26003039
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Microneedle-mediated delivery of viral vectored vaccines.
    Zaric M; Ibarzo Yus B; Kalcheva PP; Klavinskis LS
    Expert Opin Drug Deliv; 2017 Oct; 14(10):1177-1187. PubMed ID: 27591122
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.