BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 23208052)

  • 41. Effect of zymosan and poly (I:C) adjuvants on responses to microneedle immunization coated with whole inactivated influenza vaccine.
    Shin JH; Noh JY; Kim KH; Park JK; Lee JH; Jeong SD; Jung DY; Song CS; Kim YC
    J Control Release; 2017 Nov; 265():83-92. PubMed ID: 28890214
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Mass vaccination: solutions in the skin.
    Glenn GM; Kenney RT
    Curr Top Microbiol Immunol; 2006; 304():247-68. PubMed ID: 16989274
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Progress in microneedle array patch (MAP) for vaccine delivery.
    Nguyen TT; Oh Y; Kim Y; Shin Y; Baek SK; Park JH
    Hum Vaccin Immunother; 2021 Jan; 17(1):316-327. PubMed ID: 32667239
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Engineering Microneedle Patches for Vaccination and Drug Delivery to Skin.
    Prausnitz MR
    Annu Rev Chem Biomol Eng; 2017 Jun; 8():177-200. PubMed ID: 28375775
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Assessing the Potential Cost-Effectiveness of Microneedle Patches in Childhood Measles Vaccination Programs: The Case for Further Research and Development.
    Adhikari BB; Goodson JL; Chu SY; Rota PA; Meltzer MI
    Drugs R D; 2016 Dec; 16(4):327-338. PubMed ID: 27696306
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Transdermal delivery of relatively high molecular weight drugs using novel self-dissolving microneedle arrays fabricated from hyaluronic acid and their characteristics and safety after application to the skin.
    Liu S; Jin MN; Quan YS; Kamiyama F; Kusamori K; Katsumi H; Sakane T; Yamamoto A
    Eur J Pharm Biopharm; 2014 Feb; 86(2):267-76. PubMed ID: 24120887
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Microneedle Systems for Vaccine Delivery: the story so far.
    Hossain MK; Ahmed T; Bhusal P; Subedi RK; Salahshoori I; Soltani M; Hassanzadeganroudsari M
    Expert Rev Vaccines; 2020 Dec; 19(12):1153-1166. PubMed ID: 33427523
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Fabrication, Physicochemical Characterization, and Performance Evaluation of Biodegradable Polymeric Microneedle Patch System for Enhanced Transcutaneous Flux of High Molecular Weight Therapeutics.
    Shah V; Choudhury BK
    AAPS PharmSciTech; 2017 Nov; 18(8):2936-2948. PubMed ID: 28432615
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Recent insights into cutaneous immunization: How to vaccinate via the skin.
    Engelke L; Winter G; Hook S; Engert J
    Vaccine; 2015 Sep; 33(37):4663-74. PubMed ID: 26006087
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Microneedles: A smart approach and increasing potential for transdermal drug delivery system.
    Waghule T; Singhvi G; Dubey SK; Pandey MM; Gupta G; Singh M; Dua K
    Biomed Pharmacother; 2019 Jan; 109():1249-1258. PubMed ID: 30551375
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Performance and characteristics evaluation of a sodium hyaluronate-based microneedle patch for a transcutaneous drug delivery system.
    Hiraishi Y; Nakagawa T; Quan YS; Kamiyama F; Hirobe S; Okada N; Nakagawa S
    Int J Pharm; 2013 Jan; 441(1-2):570-9. PubMed ID: 23137695
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A DNA Vaccine That Targets Hemagglutinin to Antigen-Presenting Cells Protects Mice against H7 Influenza.
    Andersen TK; Zhou F; Cox R; Bogen B; Grødeland G
    J Virol; 2017 Dec; 91(23):. PubMed ID: 28931687
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Microneedle arrays delivery of the conventional vaccines based on nonvirulent viruses.
    Li N; Wang N; Wang X; Zhen Y; Wang T
    Drug Deliv; 2016 Nov; 23(9):3234-3247. PubMed ID: 26967666
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Cutaneous vaccination: the skin as an immunologically active tissue and the challenge of antigen delivery.
    Babiuk S; Baca-Estrada M; Babiuk LA; Ewen C; Foldvari M
    J Control Release; 2000 May; 66(2-3):199-214. PubMed ID: 10742580
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Influenza nucleoprotein DNA vaccination by a skin targeted, dry coated, densely packed microprojection array (Nanopatch) induces potent antibody and CD8(+) T cell responses.
    Fernando GJ; Zhang J; Ng HI; Haigh OL; Yukiko SR; Kendall MA
    J Control Release; 2016 Sep; 237():35-41. PubMed ID: 27381247
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Design and characterisation of a dissolving microneedle patch for intradermal vaccination with heat-inactivated bacteria: A proof of concept study.
    Rodgers AM; McCrudden MTC; Vincente-Perez EM; Dubois AV; Ingram RJ; Larrañeta E; Kissenpfennig A; Donnelly RF
    Int J Pharm; 2018 Oct; 549(1-2):87-95. PubMed ID: 30048778
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Transcutaneous immunization with Intercell's vaccine delivery system.
    Seid RC; Look JL; Ruiz C; Frolov V; Flyer D; Schafer J; Ellingsworth L
    Vaccine; 2012 Jun; 30(29):4349-54. PubMed ID: 22682290
    [TBL] [Abstract][Full Text] [Related]  

  • 58. New vaccination technologies that make needles redundant.
    Senior K
    Lancet Infect Dis; 2011 Jan; 11(1):16-7. PubMed ID: 21226239
    [No Abstract]   [Full Text] [Related]  

  • 59. Transcutaneous immunization: an overview of advantages, disease targets, vaccines, and delivery technologies.
    Karande P; Mitragotri S
    Annu Rev Chem Biomol Eng; 2010; 1():175-201. PubMed ID: 22432578
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Safety, tolerability, acceptability and immunogenicity of an influenza vaccine delivered to human skin by a novel high-density microprojection array patch (Nanopatch™).
    Fernando GJP; Hickling J; Jayashi Flores CM; Griffin P; Anderson CD; Skinner SR; Davies C; Witham K; Pryor M; Bodle J; Rockman S; Frazer IH; Forster AH
    Vaccine; 2018 Jun; 36(26):3779-3788. PubMed ID: 29779922
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.