These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
512 related articles for article (PubMed ID: 23208088)
1. Sensitive and selective detection of biothiols based on target-induced agglomeration of silver nanoclusters. Zhang N; Qu F; Luo HQ; Li NB Biosens Bioelectron; 2013 Apr; 42():214-8. PubMed ID: 23208088 [TBL] [Abstract][Full Text] [Related]
2. Sensitive signal-on fluorescent sensing for copper ions based on the polyethyleneimine-capped silver nanoclusters-cysteine system. Zhang N; Qu F; Luo HQ; Li NB Anal Chim Acta; 2013 Aug; 791():46-50. PubMed ID: 23890605 [TBL] [Abstract][Full Text] [Related]
3. Bovine serum albumin-confined silver nanoclusters as fluorometric probe for detection of biothiols. Chen Z; Lu D; Cai Z; Dong C; Shuang S Luminescence; 2014 Nov; 29(7):722-7. PubMed ID: 24403131 [TBL] [Abstract][Full Text] [Related]
4. A highly selective sensor of cysteine with tunable sensitivity and detection window based on dual-emission Ag nanoclusters. Zhu J; Song X; Gao L; Li Z; Liu Z; Ding S; Zou S; He Y Biosens Bioelectron; 2014 Mar; 53():71-5. PubMed ID: 24121225 [TBL] [Abstract][Full Text] [Related]
5. Oligonucleotide-stabilized fluorescent silver nanoclusters for sensitive detection of biothiols in biological fluids. Han B; Wang E Biosens Bioelectron; 2011 Jan; 26(5):2585-9. PubMed ID: 21123043 [TBL] [Abstract][Full Text] [Related]
6. Label-free colorimetric detection of biothiols utilizing SAM and unmodified Au nanoparticles. Li ZJ; Zheng XJ; Zhang L; Liang RP; Li ZM; Qiu JD Biosens Bioelectron; 2015 Jun; 68():668-674. PubMed ID: 25660511 [TBL] [Abstract][Full Text] [Related]
7. Highly sensitive and selective colorimetric detection of glutathione based on Ag [I] ion-3,3',5,5'-tetramethylbenzidine (TMB). Ni P; Sun Y; Dai H; Hu J; Jiang S; Wang Y; Li Z Biosens Bioelectron; 2015 Jan; 63():47-52. PubMed ID: 25058938 [TBL] [Abstract][Full Text] [Related]
8. A sensitive and selective resonance light scattering bioassay for homocysteine in biological fluids based on target-involved assembly of polyethyleneimine-capped Ag-nanoclusters. Sun SK; Wang HF; Yan XP Chem Commun (Camb); 2011 Apr; 47(13):3817-9. PubMed ID: 21286655 [TBL] [Abstract][Full Text] [Related]
9. A fluorescent probe for the efficient discrimination of Cys, Hcy and GSH based on different cascade reactions. Li Y; Liu W; Zhang P; Zhang H; Wu J; Ge J; Wang P Biosens Bioelectron; 2017 Apr; 90():117-124. PubMed ID: 27886598 [TBL] [Abstract][Full Text] [Related]
10. A sensitive and selective sensor for biothiols based on the turn-on fluorescence of the Fe-MIL-88 metal-organic frameworks-hydrogen peroxide system. Sun ZJ; Jiang JZ; Li YF Analyst; 2015 Dec; 140(24):8201-8. PubMed ID: 26568205 [TBL] [Abstract][Full Text] [Related]
11. A potential fluorescent probe: Maillard reaction product from glutathione and ascorbic acid for rapid and label-free dual detection of Hg(2+) and biothiols. Dong JX; Song XF; Shi Y; Gao ZF; Li BL; Li NB; Luo HQ Biosens Bioelectron; 2016 Jul; 81():473-479. PubMed ID: 27015151 [TBL] [Abstract][Full Text] [Related]
12. Graphitic carbon nitride nanodots: As reductant for the synthesis of silver nanoparticles and its biothiols biosensing application. Lu Q; Wang H; Liu Y; Hou Y; Li H; Zhang Y Biosens Bioelectron; 2017 Mar; 89(Pt 1):411-416. PubMed ID: 27241178 [TBL] [Abstract][Full Text] [Related]
13. Turn-on fluorescence detection of cysteine with glutathione protected silver nanoclusters. Cao N; Zhou H; Tan H; Qi R; Chen J; Zhang S; Xu J Methods Appl Fluoresc; 2019 Jun; 7(3):034004. PubMed ID: 31174198 [TBL] [Abstract][Full Text] [Related]
14. A ratiometric nanoprobe based on silver nanoclusters and carbon dots for the fluorescent detection of biothiols. Zhang S; Lin B; Yu Y; Cao Y; Guo M; Shui L Spectrochim Acta A Mol Biomol Spectrosc; 2018 Apr; 195():230-235. PubMed ID: 29414583 [TBL] [Abstract][Full Text] [Related]
15. A label-free turn-on-off fluorescent sensor for the sensitive detection of cysteine via blocking the Ag Li Y; Deng Y; Zhou X; Hu J Talanta; 2018 Mar; 179():742-752. PubMed ID: 29310302 [TBL] [Abstract][Full Text] [Related]
16. Etching and anti-etching strategy for sensitive colorimetric sensing of H Hou W; Liu X; Lu Q; Liu M; Zhang Y; Yao S Colloids Surf B Biointerfaces; 2018 Feb; 162():118-125. PubMed ID: 29190462 [TBL] [Abstract][Full Text] [Related]
17. Novel electrochemiluminescence of silver nanoclusters fabricated on triplex DNA scaffolds for label-free detection of biothiols. Feng L; Wu L; Xing F; Hu L; Ren J; Qu X Biosens Bioelectron; 2017 Dec; 98():378-385. PubMed ID: 28709087 [TBL] [Abstract][Full Text] [Related]
19. Assay of biothiols by regulating the growth of silver nanoparticles with C-dots as reducing agent. Shen LM; Chen Q; Sun ZY; Chen XW; Wang JH Anal Chem; 2014 May; 86(10):5002-8. PubMed ID: 24773228 [TBL] [Abstract][Full Text] [Related]
20. Colorimetric detection of biothiols based on aggregation of chitosan-stabilized silver nanoparticles. Mohammadi S; Khayatian G Spectrochim Acta A Mol Biomol Spectrosc; 2017 Oct; 185():27-34. PubMed ID: 28531847 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]