These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
216 related articles for article (PubMed ID: 23208710)
1. Chemical genomic screening of a Saccharomyces cerevisiae genomewide mutant collection reveals genes required for defense against four antimicrobial peptides derived from proteins found in human saliva. Lis M; Bhatt S; Schoenly NE; Lee AY; Nislow C; Bobek LA Antimicrob Agents Chemother; 2013 Feb; 57(2):840-7. PubMed ID: 23208710 [TBL] [Abstract][Full Text] [Related]
2. Exploring the mode of action of antimicrobial peptide MUC7 12-mer by fitness profiling of Saccharomyces cerevisiae genomewide mutant collection. Lis M; Fuss JR; Bobek LA Antimicrob Agents Chemother; 2009 Sep; 53(9):3762-9. PubMed ID: 19596888 [TBL] [Abstract][Full Text] [Related]
4. The pH-sensing Rim101 pathway positively regulates the transcriptional expression of the calcium pump gene PMR1 to affect calcium sensitivity in budding yeast. Yan H; Fang T; Xu H; Jiang L Biochem Biophys Res Commun; 2020 Nov; 532(3):453-458. PubMed ID: 32891431 [TBL] [Abstract][Full Text] [Related]
5. Screening of a Saccharomyces cerevisiae nonessential gene deletion collection for altered susceptibility to a killer peptide. Conti S; Magliani W; Giovati L; Libri I; Maffei DL; Salati A; Polonelli L New Microbiol; 2008 Jan; 31(1):143-5. PubMed ID: 18437854 [TBL] [Abstract][Full Text] [Related]
6. ESCRT components regulate the expression of the ER/Golgi calcium pump gene PMR1 through the Rim101/Nrg1 pathway in budding yeast. Zhao Y; Du J; Xiong B; Xu H; Jiang L J Mol Cell Biol; 2013 Oct; 5(5):336-44. PubMed ID: 23933635 [TBL] [Abstract][Full Text] [Related]
7. Systematical Analysis of the Protein Targets of Lactoferricin B and Histatin-5 Using Yeast Proteome Microarrays. Shah P; Wu WS; Chen CS Int J Mol Sci; 2019 Aug; 20(17):. PubMed ID: 31466342 [TBL] [Abstract][Full Text] [Related]
8. A genomic approach highlights common and diverse effects and determinants of susceptibility on the yeast Saccharomyces cerevisiae exposed to distinct antimicrobial peptides. López-García B; Gandía M; Muñoz A; Carmona L; Marcos JF BMC Microbiol; 2010 Nov; 10():289. PubMed ID: 21078184 [TBL] [Abstract][Full Text] [Related]
9. Transcriptional profiling of Saccharomyces cerevisiae exposed to propolis. de Castro PA; Savoldi M; Bonatto D; Malavazi I; Goldman MH; Berretta AA; Goldman GH BMC Complement Altern Med; 2012 Oct; 12():194. PubMed ID: 23092287 [TBL] [Abstract][Full Text] [Related]
10. Genomewide screen reveals a wide regulatory network for di/tripeptide utilization in Saccharomyces cerevisiae. Cai H; Kauffman S; Naider F; Becker JM Genetics; 2006 Mar; 172(3):1459-76. PubMed ID: 16361226 [TBL] [Abstract][Full Text] [Related]
11. The RIM101 pathway has a role in Saccharomyces cerevisiae adaptive response and resistance to propionic acid and other weak acids. Mira NP; Lourenço AB; Fernandes AR; Becker JD; Sá-Correia I FEMS Yeast Res; 2009 Mar; 9(2):202-16. PubMed ID: 19220866 [TBL] [Abstract][Full Text] [Related]
12. Genetic analysis of the signalling pathway activated by external amino acids in Saccharomyces cerevisiae. Bernard F; André B Mol Microbiol; 2001 Jul; 41(2):489-502. PubMed ID: 11489133 [TBL] [Abstract][Full Text] [Related]
13. ESCRT-III protein Snf7 mediates high-level expression of the SUC2 gene via the Rim101 pathway. Weiss P; Huppert S; Kölling R Eukaryot Cell; 2008 Nov; 7(11):1888-94. PubMed ID: 18806212 [TBL] [Abstract][Full Text] [Related]
14. The PacC-family protein Rim101 prevents selenite toxicity in Saccharomyces cerevisiae by controlling vacuolar acidification. Pérez-Sampietro M; Herrero E Fungal Genet Biol; 2014 Oct; 71():76-85. PubMed ID: 25239548 [TBL] [Abstract][Full Text] [Related]
15. In vitro assessment of antifungal therapeutic potential of salivary histatin-5, two variants of histatin-5, and salivary mucin (MUC7) domain 1. Situ H; Bobek LA Antimicrob Agents Chemother; 2000 Jun; 44(6):1485-93. PubMed ID: 10817697 [TBL] [Abstract][Full Text] [Related]
16. Multivesicular body-ESCRT components function in pH response regulation in Saccharomyces cerevisiae and Candida albicans. Xu W; Smith FJ; Subaran R; Mitchell AP Mol Biol Cell; 2004 Dec; 15(12):5528-37. PubMed ID: 15371534 [TBL] [Abstract][Full Text] [Related]
17. Chemical-genetic approaches for exploring the mode of action of natural products. Lopez A; Parsons AB; Nislow C; Giaever G; Boone C Prog Drug Res; 2008; 66():237, 239-71. PubMed ID: 18416308 [TBL] [Abstract][Full Text] [Related]
18. Antimicrobial peptide MUC7 12-mer activates the calcium/calcineurin pathway in Candida albicans. Lis M; Liu TT; Barker KS; Rogers PD; Bobek LA FEMS Yeast Res; 2010 Aug; 10(5):579-86. PubMed ID: 20491945 [TBL] [Abstract][Full Text] [Related]
19. Genomic screen for vacuolar protein sorting genes in Saccharomyces cerevisiae. Bonangelino CJ; Chavez EM; Bonifacino JS Mol Biol Cell; 2002 Jul; 13(7):2486-501. PubMed ID: 12134085 [TBL] [Abstract][Full Text] [Related]
20. Genes involved in protein glycosylation determine the activity and cell internalization of the antifungal peptide PAF26 in Saccharomyces cerevisiae. Harries E; Carmona L; Muñoz A; Ibeas JI; Read ND; Gandía M; Marcos JF Fungal Genet Biol; 2013; 58-59():105-15. PubMed ID: 23942187 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]