These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 23209395)

  • 1. Weakly circadian cells improve resynchrony.
    Webb AB; Taylor SR; Thoroughman KA; Doyle FJ; Herzog ED
    PLoS Comput Biol; 2012; 8(11):e1002787. PubMed ID: 23209395
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synchronization-induced rhythmicity of circadian oscillators in the suprachiasmatic nucleus.
    Bernard S; Gonze D; Cajavec B; Herzel H; Kramer A
    PLoS Comput Biol; 2007 Apr; 3(4):e68. PubMed ID: 17432930
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cell autonomy and synchrony of suprachiasmatic nucleus circadian oscillators.
    Mohawk JA; Takahashi JS
    Trends Neurosci; 2011 Jul; 34(7):349-58. PubMed ID: 21665298
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dissociation between two subgroups of the suprachiasmatic nucleus affected by the number of damped oscillated neurons.
    Gu C; Yang H; Rohling JH
    Phys Rev E; 2017 Mar; 95(3-1):032302. PubMed ID: 28415286
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A multicellular model for differential regulation of circadian signals in the core and shell regions of the suprachiasmatic nucleus.
    Vasalou C; Henson MA
    J Theor Biol; 2011 Nov; 288():44-56. PubMed ID: 21871462
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Model-based Inference of a Directed Network of Circadian Neurons.
    McBride D; Petzold L
    J Biol Rhythms; 2018 Oct; 33(5):515-522. PubMed ID: 30084298
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional network inference of the suprachiasmatic nucleus.
    Abel JH; Meeker K; Granados-Fuentes D; St John PC; Wang TJ; Bales BB; Doyle FJ; Herzog ED; Petzold LR
    Proc Natl Acad Sci U S A; 2016 Apr; 113(16):4512-7. PubMed ID: 27044085
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Disassortative Network Structure Improves the Synchronization between Neurons in the Suprachiasmatic Nucleus.
    Gu C; Gu X; Wang P; Ren H; Weng T; Yang H; Rohling JHT
    J Biol Rhythms; 2019 Oct; 34(5):515-524. PubMed ID: 31317809
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intrinsic, nondeterministic circadian rhythm generation in identified mammalian neurons.
    Webb AB; Angelo N; Huettner JE; Herzog ED
    Proc Natl Acad Sci U S A; 2009 Sep; 106(38):16493-8. PubMed ID: 19805326
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ontogeny of Circadian Rhythms and Synchrony in the Suprachiasmatic Nucleus.
    Carmona-Alcocer V; Abel JH; Sun TC; Petzold LR; Doyle FJ; Simms CL; Herzog ED
    J Neurosci; 2018 Feb; 38(6):1326-1334. PubMed ID: 29054877
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Calcium Circadian Rhythmicity in the Suprachiasmatic Nucleus: Cell Autonomy and Network Modulation.
    Noguchi T; Leise TL; Kingsbury NJ; Diemer T; Wang LL; Henson MA; Welsh DK
    eNeuro; 2017; 4(4):. PubMed ID: 28828400
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The proportion of light-responsive neurons determines the limit cycle properties of the suprachiasmatic nucleus.
    Gu C; Ramkisoensing A; Liu Z; Meijer JH; Rohling JH
    J Biol Rhythms; 2014 Feb; 29(1):16-27. PubMed ID: 24492879
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Noise Induces Oscillation and Synchronization of the Circadian Neurons.
    Gu C; Xu J; Rohling J; Yang H; Liu Z
    PLoS One; 2015; 10(12):e0145360. PubMed ID: 26691765
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Circadian hepatocyte clocks keep synchrony in the absence of a master pacemaker in the suprachiasmatic nucleus or other extrahepatic clocks.
    Sinturel F; Gos P; Petrenko V; Hagedorn C; Kreppel F; Storch KF; Knutti D; Liani A; Weitz C; Emmenegger Y; Franken P; Bonacina L; Dibner C; Schibler U
    Genes Dev; 2021 Mar; 35(5-6):329-334. PubMed ID: 33602874
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Clock-Talk: Interactions between Central and Peripheral Circadian Oscillators in Mammals.
    Schibler U; Gotic I; Saini C; Gos P; Curie T; Emmenegger Y; Sinturel F; Gosselin P; Gerber A; Fleury-Olela F; Rando G; Demarque M; Franken P
    Cold Spring Harb Symp Quant Biol; 2015; 80():223-32. PubMed ID: 26683231
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Coherency of circadian rhythms in the SCN is governed by the interplay of two coupling factors.
    Tokuda IT; Ono D; Honma S; Honma KI; Herzel H
    PLoS Comput Biol; 2018 Dec; 14(12):e1006607. PubMed ID: 30532130
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neuronal oscillations on an ultra-slow timescale: daily rhythms in electrical activity and gene expression in the mammalian master circadian clockwork.
    Belle MDC; Diekman CO
    Eur J Neurosci; 2018 Oct; 48(8):2696-2717. PubMed ID: 29396876
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phase resetting of the mammalian circadian clock relies on a rapid shift of a small population of pacemaker neurons.
    Rohling JH; vanderLeest HT; Michel S; Vansteensel MJ; Meijer JH
    PLoS One; 2011; 6(9):e25437. PubMed ID: 21966529
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cellular circadian oscillators in the suprachiasmatic nucleus remain coupled in the absence of connexin-36.
    Diemer T; Landgraf D; Noguchi T; Pan H; Moreno JL; Welsh DK
    Neuroscience; 2017 Aug; 357():1-11. PubMed ID: 28576728
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Circadian regulation and function of voltage-dependent calcium channels in the suprachiasmatic nucleus.
    Nahm SS; Farnell YZ; Griffith W; Earnest DJ
    J Neurosci; 2005 Oct; 25(40):9304-8. PubMed ID: 16207890
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.