These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 23209395)

  • 41. Dispersion of the intrinsic neuronal periods affects the relationship of the entrainment range to the coupling strength in the suprachiasmatic nucleus.
    Gu C; Yang H; Wang M
    Phys Rev E; 2017 Nov; 96(5-1):052207. PubMed ID: 29347798
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The mammalian circadian system: a hierarchical multi-oscillator structure for generating circadian rhythm.
    Honma S
    J Physiol Sci; 2018 May; 68(3):207-219. PubMed ID: 29460036
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Collective timekeeping among cells of the master circadian clock.
    Evans JA
    J Endocrinol; 2016 Jul; 230(1):R27-49. PubMed ID: 27154335
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Circadian PER2::LUC rhythms in the olfactory bulb of freely moving mice depend on the suprachiasmatic nucleus but not on behaviour rhythms.
    Ono D; Honma S; Honma K
    Eur J Neurosci; 2015 Dec; 42(12):3128-37. PubMed ID: 26489367
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Clustering predicted by an electrophysiological model of the suprachiasmatic nucleus.
    Diekman CO; Forger DB
    J Biol Rhythms; 2009 Aug; 24(4):322-33. PubMed ID: 19625734
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Temporal precision in the mammalian circadian system: a reliable clock from less reliable neurons.
    Herzog ED; Aton SJ; Numano R; Sakaki Y; Tei H
    J Biol Rhythms; 2004 Feb; 19(1):35-46. PubMed ID: 14964702
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Independent circadian oscillations of Period1 in specific brain areas in vivo and in vitro.
    Abraham U; Prior JL; Granados-Fuentes D; Piwnica-Worms DR; Herzog ED
    J Neurosci; 2005 Sep; 25(38):8620-6. PubMed ID: 16177029
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Mathematical modeling in chronobiology.
    Bordyugov G; Westermark PO; Korenčič A; Bernard S; Herzel H
    Handb Exp Pharmacol; 2013; (217):335-57. PubMed ID: 23604486
    [TBL] [Abstract][Full Text] [Related]  

  • 49. In vivo monitoring of peripheral circadian clocks in the mouse.
    Tahara Y; Kuroda H; Saito K; Nakajima Y; Kubo Y; Ohnishi N; Seo Y; Otsuka M; Fuse Y; Ohura Y; Komatsu T; Moriya Y; Okada S; Furutani N; Hirao A; Horikawa K; Kudo T; Shibata S
    Curr Biol; 2012 Jun; 22(11):1029-34. PubMed ID: 22578421
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Heterogeneity of neuronal properties determines the collective behavior of the neurons in the suprachiasmatic nucleus.
    Gu CG; Wang P; Weng TF; Yang HJ; Rohling J
    Math Biosci Eng; 2019 Mar; 16(4):1893-1913. PubMed ID: 31137191
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Circadian function of suprachiasmatic nuclei: molecular and cellular biology.
    Ikonomov OC; Stoynev AG; Shisheva AC
    Chronobiologia; 1994; 21(1-2):71-7. PubMed ID: 7924642
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Small-world network models of intercellular coupling predict enhanced synchronization in the suprachiasmatic nucleus.
    Vasalou C; Herzog ED; Henson MA
    J Biol Rhythms; 2009 Jun; 24(3):243-54. PubMed ID: 19465701
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Mammalian cultured cells as a model system of peripheral circadian clocks.
    Tsuchiya Y; Nishida E
    J Biochem; 2003 Dec; 134(6):785-90. PubMed ID: 14769865
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A multiscale model to investigate circadian rhythmicity of pacemaker neurons in the suprachiasmatic nucleus.
    Vasalou C; Henson MA
    PLoS Comput Biol; 2010 Mar; 6(3):e1000706. PubMed ID: 20300645
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Multiple oscillators in the suprachiasmatic nucleus.
    Shirakawa T; Honma S; Honma K
    Chronobiol Int; 2001 May; 18(3):371-87. PubMed ID: 11475409
    [TBL] [Abstract][Full Text] [Related]  

  • 56. In vitro circadian rhythms: imaging and electrophysiology.
    Beaulé C; Granados-Fuentes D; Marpegan L; Herzog ED
    Essays Biochem; 2011 Jun; 49(1):103-17. PubMed ID: 21819387
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Immortalized cell lines for real-time analysis of circadian pacemaker and peripheral oscillator properties.
    Farnell YF; Shende VR; Neuendorff N; Allen GC; Earnest DJ
    Eur J Neurosci; 2011 Apr; 33(8):1533-40. PubMed ID: 21366728
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Phase shifting capacity of the circadian pacemaker determined by the SCN neuronal network organization.
    vanderLeest HT; Rohling JH; Michel S; Meijer JH
    PLoS One; 2009; 4(3):e4976. PubMed ID: 19305510
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The biological clock nucleus: a multiphasic oscillator network regulated by light.
    Quintero JE; Kuhlman SJ; McMahon DG
    J Neurosci; 2003 Sep; 23(22):8070-6. PubMed ID: 12954869
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Development of the mammalian circadian clock.
    Honma S
    Eur J Neurosci; 2020 Jan; 51(1):182-193. PubMed ID: 30589961
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.