These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 23209424)

  • 21. Mutant huntingtin causes context-dependent neurodegeneration in mice with Huntington's disease.
    Yu ZX; Li SH; Evans J; Pillarisetti A; Li H; Li XJ
    J Neurosci; 2003 Mar; 23(6):2193-202. PubMed ID: 12657678
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Probing the metabolic aberrations underlying mutant huntingtin toxicity in yeast and assessing their degree of preservation in humans and mice.
    Joyner PM; Matheke RM; Smith LM; Cichewicz RH
    J Proteome Res; 2010 Jan; 9(1):404-12. PubMed ID: 19908918
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mutant huntingtin inhibits the mitochondrial unfolded protein response by impairing ABCB10 mRNA stability.
    Fu Z; Liu F; Liu C; Jin B; Jiang Y; Tang M; Qi X; Guo X
    Biochim Biophys Acta Mol Basis Dis; 2019 Jun; 1865(6):1428-1435. PubMed ID: 30802639
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Defective mitochondrial disulfide relay system, altered mitochondrial morphology and function in Huntington's disease.
    Napoli E; Wong S; Hung C; Ross-Inta C; Bomdica P; Giulivi C
    Hum Mol Genet; 2013 Mar; 22(5):989-1004. PubMed ID: 23197653
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Sirt1 mediates neuroprotection from mutant huntingtin by activation of the TORC1 and CREB transcriptional pathway.
    Jeong H; Cohen DE; Cui L; Supinski A; Savas JN; Mazzulli JR; Yates JR; Bordone L; Guarente L; Krainc D
    Nat Med; 2011 Dec; 18(1):159-65. PubMed ID: 22179316
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Examination of mesenchymal stem cell-mediated RNAi transfer to Huntington's disease affected neuronal cells for reduction of huntingtin.
    Olson SD; Kambal A; Pollock K; Mitchell GM; Stewart H; Kalomoiris S; Cary W; Nacey C; Pepper K; Nolta JA
    Mol Cell Neurosci; 2012 Mar; 49(3):271-81. PubMed ID: 22198539
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Coupling of D2R Short but not D2R Long receptor isoform to the Rho/ROCK signaling pathway renders striatal neurons vulnerable to mutant huntingtin.
    Galan-Rodriguez B; Martin E; Brouillet E; Déglon N; Betuing S; Caboche J
    Eur J Neurosci; 2017 Jan; 45(1):198-206. PubMed ID: 27717053
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mutant huntingtin activates Nrf2-responsive genes and impairs dopamine synthesis in a PC12 model of Huntington's disease.
    van Roon-Mom WM; Pepers BA; 't Hoen PA; Verwijmeren CA; den Dunnen JT; Dorsman JC; van Ommen GB
    BMC Mol Biol; 2008 Oct; 9():84. PubMed ID: 18844975
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Rac1 Activity Is Modulated by Huntingtin and Dysregulated in Models of Huntington's Disease.
    Tousley A; Iuliano M; Weisman E; Sapp E; Zhang N; Vodicka P; Alexander J; Aviolat H; Gatune L; Reeves P; Li X; Khvorova A; Ellerby LM; Aronin N; DiFiglia M; Kegel-Gleason KB
    J Huntingtons Dis; 2019; 8(1):53-69. PubMed ID: 30594931
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mutant huntingtin binds the mitochondrial fission GTPase dynamin-related protein-1 and increases its enzymatic activity.
    Song W; Chen J; Petrilli A; Liot G; Klinglmayr E; Zhou Y; Poquiz P; Tjong J; Pouladi MA; Hayden MR; Masliah E; Ellisman M; Rouiller I; Schwarzenbacher R; Bossy B; Perkins G; Bossy-Wetzel E
    Nat Med; 2011 Mar; 17(3):377-82. PubMed ID: 21336284
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mutant huntingtin-impaired degradation of beta-catenin causes neurotoxicity in Huntington's disease.
    Godin JD; Poizat G; Hickey MA; Maschat F; Humbert S
    EMBO J; 2010 Jul; 29(14):2433-45. PubMed ID: 20531388
    [TBL] [Abstract][Full Text] [Related]  

  • 32. BH3-only proteins Bid and Bim(EL) are differentially involved in neuronal dysfunction in mouse models of Huntington's disease.
    García-Martínez JM; Pérez-Navarro E; Xifró X; Canals JM; Díaz-Hernández M; Trioulier Y; Brouillet E; Lucas JJ; Alberch J
    J Neurosci Res; 2007 Sep; 85(12):2756-69. PubMed ID: 17387706
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Insulin and IGF-1 improve mitochondrial function in a PI-3K/Akt-dependent manner and reduce mitochondrial generation of reactive oxygen species in Huntington's disease knock-in striatal cells.
    Ribeiro M; Rosenstock TR; Oliveira AM; Oliveira CR; Rego AC
    Free Radic Biol Med; 2014 Sep; 74():129-44. PubMed ID: 24992836
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Age-dependent changes in the calcium sensitivity of striatal mitochondria in mouse models of Huntington's Disease.
    Brustovetsky N; LaFrance R; Purl KJ; Brustovetsky T; Keene CD; Low WC; Dubinsky JM
    J Neurochem; 2005 Jun; 93(6):1361-70. PubMed ID: 15935052
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Proteasomal-dependent aggregate reversal and absence of cell death in a conditional mouse model of Huntington's disease.
    Martín-Aparicio E; Yamamoto A; Hernández F; Hen R; Avila J; Lucas JJ
    J Neurosci; 2001 Nov; 21(22):8772-81. PubMed ID: 11698589
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Striatal-enriched protein tyrosine phosphatase expression and activity in Huntington's disease: a STEP in the resistance to excitotoxicity.
    Saavedra A; Giralt A; Rué L; Xifró X; Xu J; Ortega Z; Lucas JJ; Lombroso PJ; Alberch J; Pérez-Navarro E
    J Neurosci; 2011 Jun; 31(22):8150-62. PubMed ID: 21632937
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mutant huntingtin, abnormal mitochondrial dynamics, defective axonal transport of mitochondria, and selective synaptic degeneration in Huntington's disease.
    Reddy PH; Shirendeb UP
    Biochim Biophys Acta; 2012 Feb; 1822(2):101-10. PubMed ID: 22080977
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mitochondrial DNA damage is associated with reduced mitochondrial bioenergetics in Huntington's disease.
    Siddiqui A; Rivera-Sánchez S; Castro Mdel R; Acevedo-Torres K; Rane A; Torres-Ramos CA; Nicholls DG; Andersen JK; Ayala-Torres S
    Free Radic Biol Med; 2012 Oct; 53(7):1478-88. PubMed ID: 22709585
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The mGluR5 positive allosteric modulator, CDPPB, ameliorates pathology and phenotypic signs of a mouse model of Huntington's disease.
    Doria JG; de Souza JM; Andrade JN; Rodrigues HA; Guimaraes IM; Carvalho TG; Guatimosim C; Dobransky T; Ribeiro FM
    Neurobiol Dis; 2015 Jan; 73():163-73. PubMed ID: 25160573
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Identification of NUB1 as a suppressor of mutant Huntington toxicity via enhanced protein clearance.
    Lu B; Al-Ramahi I; Valencia A; Wang Q; Berenshteyn F; Yang H; Gallego-Flores T; Ichcho S; Lacoste A; Hild M; Difiglia M; Botas J; Palacino J
    Nat Neurosci; 2013 May; 16(5):562-70. PubMed ID: 23525043
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.