BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

271 related articles for article (PubMed ID: 23209567)

  • 1. Nuclear RNA sequencing of the mouse erythroid cell transcriptome.
    Mitchell JA; Clay I; Umlauf D; Chen CY; Moir CA; Eskiw CH; Schoenfelder S; Chakalova L; Nagano T; Fraser P
    PLoS One; 2012; 7(11):e49274. PubMed ID: 23209567
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nuclear RNA Isolation and Sequencing.
    Dhaliwal NK; Mitchell JA
    Methods Mol Biol; 2021; 2372():75-83. PubMed ID: 34417744
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nuclear RNA Isolation and Sequencing.
    Dhaliwal NK; Mitchell JA
    Methods Mol Biol; 2016; 1402():63-71. PubMed ID: 26721484
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative transcriptome analysis of epithelial and fiber cells in newborn mouse lenses with RNA sequencing.
    Hoang TV; Kumar PK; Sutharzan S; Tsonis PA; Liang C; Robinson ML
    Mol Vis; 2014; 20():1491-517. PubMed ID: 25489224
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genome-wide analysis in Plasmodium falciparum reveals early and late phases of RNA polymerase II occupancy during the infectious cycle.
    Rai R; Zhu L; Chen H; Gupta AP; Sze SK; Zheng J; Ruedl C; Bozdech Z; Featherstone M
    BMC Genomics; 2014 Nov; 15(1):959. PubMed ID: 25373614
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CTCF and CohesinSA-1 Mark Active Promoters and Boundaries of Repressive Chromatin Domains in Primary Human Erythroid Cells.
    Steiner LA; Schulz V; Makismova Y; Lezon-Geyda K; Gallagher PG
    PLoS One; 2016; 11(5):e0155378. PubMed ID: 27219007
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predicting long non-coding RNAs using RNA sequencing.
    Ilott NE; Ponting CP
    Methods; 2013 Sep; 63(1):50-9. PubMed ID: 23541739
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of RNA decay factor mediated RNA stability contributions on RNA abundance.
    Maekawa S; Imamachi N; Irie T; Tani H; Matsumoto K; Mizutani R; Imamura K; Kakeda M; Yada T; Sugano S; Suzuki Y; Akimitsu N
    BMC Genomics; 2015 Mar; 16(1):154. PubMed ID: 25879614
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of biologically relevant enhancers in human erythroid cells.
    Su MY; Steiner LA; Bogardus H; Mishra T; Schulz VP; Hardison RC; Gallagher PG
    J Biol Chem; 2013 Mar; 288(12):8433-8444. PubMed ID: 23341446
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DIS3 shapes the RNA polymerase II transcriptome in humans by degrading a variety of unwanted transcripts.
    Szczepińska T; Kalisiak K; Tomecki R; Labno A; Borowski LS; Kulinski TM; Adamska D; Kosinska J; Dziembowski A
    Genome Res; 2015 Nov; 25(11):1622-33. PubMed ID: 26294688
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transcriptome-wide high-throughput mapping of protein-RNA occupancy profiles using POP-seq.
    Srivastava M; Srivastava R; Janga SC
    Sci Rep; 2021 Jan; 11(1):1175. PubMed ID: 33441968
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Comprehensive Analysis of Cell Type-Specific Nuclear RNA From Neurons and Glia of the Brain.
    Reddy AS; O'Brien D; Pisat N; Weichselbaum CT; Sakers K; Lisci M; Dalal JS; Dougherty JD
    Biol Psychiatry; 2017 Feb; 81(3):252-264. PubMed ID: 27113499
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Global Run-on Sequencing (GRO-Seq).
    Tzerpos P; Daniel B; Nagy L
    Methods Mol Biol; 2021; 2351():25-39. PubMed ID: 34382182
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Requirement for SNAPC1 in transcriptional responsiveness to diverse extracellular signals.
    Baillat D; Gardini A; Cesaroni M; Shiekhattar R
    Mol Cell Biol; 2012 Nov; 32(22):4642-50. PubMed ID: 22966203
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Integrated genome-wide analysis of transcription factor occupancy, RNA polymerase II binding and steady-state RNA levels identify differentially regulated functional gene classes.
    Mokry M; Hatzis P; Schuijers J; Lansu N; Ruzius FP; Clevers H; Cuppen E
    Nucleic Acids Res; 2012 Jan; 40(1):148-58. PubMed ID: 21914722
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nuclear organization of RNA polymerase II transcription.
    Davidson S; Macpherson N; Mitchell JA
    Biochem Cell Biol; 2013 Feb; 91(1):22-30. PubMed ID: 23442138
    [TBL] [Abstract][Full Text] [Related]  

  • 17. RNA polymerase II pausing downstream of core histone genes is different from genes producing polyadenylated transcripts.
    Anamika K; Gyenis À; Poidevin L; Poch O; Tora L
    PLoS One; 2012; 7(6):e38769. PubMed ID: 22701709
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Screening thousands of transcribed coding and non-coding regions reveals sequence determinants of RNA polymerase II elongation potential.
    Vlaming H; Mimoso CA; Field AR; Martin BJE; Adelman K
    Nat Struct Mol Biol; 2022 Jun; 29(6):613-620. PubMed ID: 35681023
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genome-wide measurement of RNA dissociation from chromatin classifies transcripts by their dynamics and reveals rapid dissociation of enhancer lncRNAs.
    Ntini E; Budach S; Vang Ørom UA; Marsico A
    Cell Syst; 2023 Oct; 14(10):906-922.e6. PubMed ID: 37857083
    [TBL] [Abstract][Full Text] [Related]  

  • 20. RNA polymerase II binding patterns reveal genomic regions involved in microRNA gene regulation.
    Wang G; Wang Y; Shen C; Huang YW; Huang K; Huang TH; Nephew KP; Li L; Liu Y
    PLoS One; 2010 Nov; 5(11):e13798. PubMed ID: 21072189
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.