BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

305 related articles for article (PubMed ID: 23209573)

  • 1. Trophic cascades induced by lobster fishing are not ubiquitous in southern California kelp forests.
    Guenther CM; Lenihan HS; Grant LE; Lopez-Carr D; Reed DC
    PLoS One; 2012; 7(11):e49396. PubMed ID: 23209573
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Trophic cascade in a marine protected area with artificial reefs: spiny lobster predation mitigates urchin barrens.
    Kawamata S; Taino S
    Ecol Appl; 2021 Sep; 31(6):e02364. PubMed ID: 33899297
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Context-dependent effects of fishing: variation in trophic cascades across environmental gradients.
    Shears NT; Babcock RC; Salomon AK
    Ecol Appl; 2008 Dec; 18(8):1860-73. PubMed ID: 19263884
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cascading effects of fishing can alter carbon flow through a temperate coastal ecosystem.
    Salomon AK; Shears NT; Langlois TJ; Babcock RC
    Ecol Appl; 2008 Dec; 18(8):1874-87. PubMed ID: 19263885
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Experiments reveal limited top-down control of key herbivores in southern California kelp forests.
    Dunn RP; Hovel KA
    Ecology; 2019 Mar; 100(3):e02625. PubMed ID: 30648729
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exploitation and recovery of a sea urchin predator has implications for the resilience of southern California kelp forests.
    Hamilton SL; Caselle JE
    Proc Biol Sci; 2015 Jan; 282(1799):20141817. PubMed ID: 25500572
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Trophic redundancy and predator size class structure drive differences in kelp forest ecosystem dynamics.
    Eisaguirre JH; Eisaguirre JM; Davis K; Carlson PM; Gaines SD; Caselle JE
    Ecology; 2020 May; 101(5):e02993. PubMed ID: 32002994
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Geographic extent and variation of a coral reef trophic cascade.
    McClanahan TR; Muthiga NA
    Ecology; 2016 Jul; 97(7):1862-1872. PubMed ID: 27859162
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interactive effects of predator and prey harvest on ecological resilience of rocky reefs.
    Dunn RP; Baskett ML; Hovel KA
    Ecol Appl; 2017 Sep; 27(6):1718-1730. PubMed ID: 28581670
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Indirect food web interactions: sea otters and kelp forest fishes in the Aleutian archipelago.
    Reisewitz SE; Estes JA; Simenstad CA
    Oecologia; 2006 Jan; 146(4):623-31. PubMed ID: 16193296
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transient dynamics during kelp forest recovery from fishing across multiple trophic levels.
    Dunn RP; Samhouri JF; Baskett ML
    Ecol Appl; 2021 Sep; 31(6):e02367. PubMed ID: 33938605
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Marine reserves reduce risk of climate-driven phase shift by reinstating size- and habitat-specific trophic interactions.
    Ling SD; Johnson CR
    Ecol Appl; 2012 Jun; 22(4):1232-45. PubMed ID: 22827131
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Marine reserves demonstrate top-down control of community structure on temperate reefs.
    Shears NT; Babcock RC
    Oecologia; 2002 Jun; 132(1):131-142. PubMed ID: 28547276
    [TBL] [Abstract][Full Text] [Related]  

  • 14. After 15 years, no evidence for trophic cascades in marine protected areas.
    Malakhoff KD; Miller RJ
    Proc Biol Sci; 2021 Feb; 288(1945):20203061. PubMed ID: 33593185
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Trophic cascades result in large-scale coralline algae loss through differential grazer effects.
    O'Leary JK; McClanahan TR
    Ecology; 2010 Dec; 91(12):3584-97. PubMed ID: 21302830
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protection of large predators in a marine reserve alters size-dependent prey mortality.
    Selden RL; Gaines SD; Hamilton SL; Warner RR
    Proc Biol Sci; 2017 Jan; 284(1847):. PubMed ID: 28123086
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conspecific cues, not starvation, mediate barren urchin response to predation risk.
    Knight CJ; Dunn RP; Long JD
    Oecologia; 2022 Aug; 199(4):859-869. PubMed ID: 35907124
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Climate and fishing drive regime shifts in consumer-mediated nutrient cycling in kelp forests.
    Peters JR; Reed DC; Burkepile DE
    Glob Chang Biol; 2019 Sep; 25(9):3179-3192. PubMed ID: 31119829
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Historical ecology and the conservation of large, hermaphroditic fishes in Pacific Coast kelp forest ecosystems.
    Braje TJ; Rick TC; Szpak P; Newsome SD; McCain JM; Elliott Smith EA; Glassow M; Hamilton SL
    Sci Adv; 2017 Feb; 3(2):e1601759. PubMed ID: 28164155
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Alternations in the foraging behaviour of a primary consumer drive patch transition dynamics in a temperate rocky reef ecosystem.
    Smith JG; Tinker MT
    Ecol Lett; 2022 Aug; 25(8):1827-1838. PubMed ID: 35767228
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.