These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 23209685)

  • 1. Identification of nucleotide-binding sites in protein structures: a novel approach based on nucleotide modularity.
    Parca L; Gherardini PF; Truglio M; Mangone I; Ferrè F; Helmer-Citterich M; Ausiello G
    PLoS One; 2012; 7(11):e50240. PubMed ID: 23209685
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nucleos: a web server for the identification of nucleotide-binding sites in protein structures.
    Parca L; Ferré F; Ausiello G; Helmer-Citterich M
    Nucleic Acids Res; 2013 Jul; 41(Web Server issue):W281-5. PubMed ID: 23703207
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modular architecture of nucleotide-binding pockets.
    Gherardini PF; Ausiello G; Russell RB; Helmer-Citterich M
    Nucleic Acids Res; 2010 Jun; 38(11):3809-16. PubMed ID: 20185567
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phosfinder: a web server for the identification of phosphate-binding sites on protein structures.
    Parca L; Mangone I; Gherardini PF; Ausiello G; Helmer-Citterich M
    Nucleic Acids Res; 2011 Jul; 39(Web Server issue):W278-82. PubMed ID: 21622655
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phosphate binding sites identification in protein structures.
    Parca L; Gherardini PF; Helmer-Citterich M; Ausiello G
    Nucleic Acids Res; 2011 Mar; 39(4):1231-42. PubMed ID: 20974634
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deciphering common recognition principles of nucleoside mono/di and tri-phosphates binding in diverse proteins via structural matching of their binding sites.
    Bhagavat R; Srinivasan N; Chandra N
    Proteins; 2017 Sep; 85(9):1699-1712. PubMed ID: 28547747
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Towards a structural classification of phosphate binding sites in protein-nucleotide complexes: an automated all-against-all structural comparison using geometric matching.
    Brakoulias A; Jackson RM
    Proteins; 2004 Aug; 56(2):250-60. PubMed ID: 15211509
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prediction of carbohydrate binding sites on protein surfaces with 3-dimensional probability density distributions of interacting atoms.
    Tsai KC; Jian JW; Yang EW; Hsu PC; Peng HP; Chen CT; Chen JB; Chang JY; Hsu WL; Yang AS
    PLoS One; 2012; 7(7):e40846. PubMed ID: 22848404
    [TBL] [Abstract][Full Text] [Related]  

  • 9. NSiteMatch: Prediction of Binding Sites of Nucleotides by Identifying the Structure Similarity of Local Surface Patches.
    Sun J; Chen K
    Comput Math Methods Med; 2017; 2017():5471607. PubMed ID: 28811833
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ProMate: a structure based prediction program to identify the location of protein-protein binding sites.
    Neuvirth H; Raz R; Schreiber G
    J Mol Biol; 2004 Apr; 338(1):181-99. PubMed ID: 15050833
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protein-protein complex structure predictions by multimeric threading and template recombination.
    Mukherjee S; Zhang Y
    Structure; 2011 Jul; 19(7):955-66. PubMed ID: 21742262
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An empirical approach for detecting nucleotide-binding sites on proteins.
    Saito M; Go M; Shirai T
    Protein Eng Des Sel; 2006 Feb; 19(2):67-75. PubMed ID: 16403825
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A threading-based method (FINDSITE) for ligand-binding site prediction and functional annotation.
    Brylinski M; Skolnick J
    Proc Natl Acad Sci U S A; 2008 Jan; 105(1):129-34. PubMed ID: 18165317
    [TBL] [Abstract][Full Text] [Related]  

  • 14. fPOP: footprinting functional pockets of proteins by comparative spatial patterns.
    Tseng YY; Chen ZJ; Li WH
    Nucleic Acids Res; 2010 Jan; 38(Database issue):D288-95. PubMed ID: 19880384
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A machine learning information retrieval approach to protein fold recognition.
    Cheng J; Baldi P
    Bioinformatics; 2006 Jun; 22(12):1456-63. PubMed ID: 16547073
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural fragment clustering reveals novel structural and functional motifs in alpha-helical transmembrane proteins.
    Marsico A; Henschel A; Winter C; Tuukkanen A; Vassilev B; Scheubert K; Schroeder M
    BMC Bioinformatics; 2010 Apr; 11():204. PubMed ID: 20420672
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of protein binding sites by computational solvent mapping.
    Hall DR; Kozakov D; Vajda S
    Methods Mol Biol; 2012; 819():13-27. PubMed ID: 22183527
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predicting protein-binding RNA nucleotides with consideration of binding partners.
    Tuvshinjargal N; Lee W; Park B; Han K
    Comput Methods Programs Biomed; 2015 Jun; 120(1):3-15. PubMed ID: 25907142
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of protein biochemical functions by similarity search using the molecular surface database eF-site.
    Kinoshita K; Nakamura H
    Protein Sci; 2003 Aug; 12(8):1589-95. PubMed ID: 12876308
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Predicting small ligand binding sites in proteins using backbone structure.
    Bordner AJ
    Bioinformatics; 2008 Dec; 24(24):2865-71. PubMed ID: 18940825
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.