BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 23209711)

  • 1. Ensemble response in mushroom body output neurons of the honey bee outpaces spatiotemporal odor processing two synapses earlier in the antennal lobe.
    Strube-Bloss MF; Herrera-Valdez MA; Smith BH
    PLoS One; 2012; 7(11):e50322. PubMed ID: 23209711
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Presynaptic developmental plasticity allows robust sparse wiring of the
    Elkahlah NA; Rogow JA; Ahmed M; Clowney EJ
    Elife; 2020 Jan; 9():. PubMed ID: 31913123
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multielectrode recordings of cockroach antennal lobe neurons in response to temporal dynamics of odor concentrations.
    Tichy H; Martzok A; Linhart M; Zopf LM; Hellwig M
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2023 May; 209(3):411-436. PubMed ID: 36645471
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chronic exposure to odors at naturally occurring concentrations triggers limited plasticity in early stages of
    Gugel ZV; Maurais EG; Hong EJ
    Elife; 2023 May; 12():. PubMed ID: 37195027
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Novelty detection in early olfactory processing of the honey bee, Apis mellifera.
    Lei H; Haney S; Jernigan CM; Guo X; Cook CN; Bazhenov M; Smith BH
    PLoS One; 2022; 17(3):e0265009. PubMed ID: 35353837
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Avoidance response to CO2 in the lateral horn.
    Varela N; Gaspar M; Dias S; Vasconcelos ML
    PLoS Biol; 2019 Jan; 17(1):e2006749. PubMed ID: 30653496
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Glomerular interactions in olfactory processing channels of the antennal lobes.
    Heinbockel T; Shields VD; Reisenman CE
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2013 Nov; 199(11):929-46. PubMed ID: 23893248
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Normalization for sparse encoding of odors by a wide-field interneuron.
    Papadopoulou M; Cassenaer S; Nowotny T; Laurent G
    Science; 2011 May; 332(6030):721-5. PubMed ID: 21551062
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Honey Bees Modulate Their Olfactory Learning in the Presence of Hornet Predators and Alarm Component.
    Wang Z; Qu Y; Dong S; Wen P; Li J; Tan K; Menzel R
    PLoS One; 2016; 11(2):e0150399. PubMed ID: 26919132
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rapid odor processing in the honeybee antennal lobe network.
    Krofczik S; Menzel R; Nawrot MP
    Front Comput Neurosci; 2008; 2():9. PubMed ID: 19221584
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization and coding of behaviorally significant odor mixtures.
    Riffell JA; Lei H; Christensen TA; Hildebrand JG
    Curr Biol; 2009 Feb; 19(4):335-40. PubMed ID: 19230669
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Combinatorial encoding of odors in the mosquito antennal lobe.
    Singh P; Goyal S; Gupta S; Garg S; Tiwari A; Rajput V; Bates AS; Gupta AK; Gupta N
    Nat Commun; 2023 Jun; 14(1):3539. PubMed ID: 37322224
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mind the gap: olfactory trace conditioning in honeybees.
    Szyszka P; Demmler C; Oemisch M; Sommer L; Biergans S; Birnbach B; Silbering AF; Galizia CG
    J Neurosci; 2011 May; 31(20):7229-39. PubMed ID: 21593307
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mushroom body input connections form independently of sensory activity in Drosophila melanogaster.
    Hayashi TT; MacKenzie AJ; Ganguly I; Ellis KE; Smihula HM; Jacob MS; Litwin-Kumar A; Caron SJC
    Curr Biol; 2022 Sep; 32(18):4000-4012.e5. PubMed ID: 35977547
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Odor processing in the cockroach antennal lobe-the network components.
    Fuscà D; Kloppenburg P
    Cell Tissue Res; 2021 Jan; 383(1):59-73. PubMed ID: 33486607
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The looks of an odour--visualising neural odour response patterns in real time.
    Strauch M; Müthing C; Broeg MP; Szyszka P; Münch D; Laudes T; Deussen O; Galizia CG; Merhof D
    BMC Bioinformatics; 2013; 14 Suppl 19(Suppl 19):S6. PubMed ID: 24564474
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Active Sensing in Bees Through Antennal Movements Is Independent of Odor Molecule.
    Claverie N; Buvat P; Casas J
    Integr Comp Biol; 2023 Aug; 63(2):315-331. PubMed ID: 36958852
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Learning modulates the ensemble representations for odors in primary olfactory networks.
    Daly KC; Christensen TA; Lei H; Smith BH; Hildebrand JG
    Proc Natl Acad Sci U S A; 2004 Jul; 101(28):10476-81. PubMed ID: 15232007
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Postsynaptic odorant concentration dependent inhibition controls temporal properties of spike responses of projection neurons in the moth antennal lobe.
    Fujiwara T; Kazawa T; Haupt SS; Kanzaki R
    PLoS One; 2014; 9(2):e89132. PubMed ID: 24586546
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Non-synaptic interactions between olfactory receptor neurons, a possible key feature of odor processing in flies.
    Pannunzi M; Nowotny T
    PLoS Comput Biol; 2021 Dec; 17(12):e1009583. PubMed ID: 34898600
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.