These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

324 related articles for article (PubMed ID: 23209711)

  • 21. Two Parallel Olfactory Pathways for Processing General Odors in a Cockroach.
    Watanabe H; Nishino H; Mizunami M; Yokohari F
    Front Neural Circuits; 2017; 11():32. PubMed ID: 28529476
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Origins of correlated activity in an olfactory circuit.
    Kazama H; Wilson RI
    Nat Neurosci; 2009 Sep; 12(9):1136-44. PubMed ID: 19684589
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Neural Correlates of Odor Learning in the Presynaptic Microglomerular Circuitry in the Honeybee Mushroom Body Calyx.
    Haenicke J; Yamagata N; Zwaka H; Nawrot M; Menzel R
    eNeuro; 2018; 5(3):. PubMed ID: 29938214
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Learning about natural variation of odor mixtures enhances categorization in early olfactory processing.
    Locatelli FF; Fernandez PC; Smith BH
    J Exp Biol; 2016 Sep; 219(Pt 17):2752-62. PubMed ID: 27412003
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Long-term memory and response generalization in mushroom body extrinsic neurons in the honeybee Apis mellifera.
    Haehnel M; Menzel R
    J Exp Biol; 2012 Feb; 215(Pt 3):559-65. PubMed ID: 22246265
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cellular-resolution population imaging reveals robust sparse coding in the Drosophila mushroom body.
    Honegger KS; Campbell RA; Turner GC
    J Neurosci; 2011 Aug; 31(33):11772-85. PubMed ID: 21849538
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Classification of odorants across layers in locust olfactory pathway.
    Sanda P; Kee T; Gupta N; Stopfer M; Bazhenov M
    J Neurophysiol; 2016 May; 115(5):2303-16. PubMed ID: 26864765
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Maturation of odor representation in the honeybee antennal lobe.
    Wang S; Zhang S; Sato K; Srinivasan MV
    J Insect Physiol; 2005 Nov; 51(11):1244-54. PubMed ID: 16183074
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A computational model of the response of honey bee antennal lobe circuitry to odor mixtures: overshadowing, blocking and unblocking can arise from lateral inhibition.
    Linster C; Smith BH
    Behav Brain Res; 1997 Aug; 87(1):1-14. PubMed ID: 9331469
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Multielectrode recordings of cockroach antennal lobe neurons in response to temporal dynamics of odor concentrations.
    Tichy H; Martzok A; Linhart M; Zopf LM; Hellwig M
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2023 May; 209(3):411-436. PubMed ID: 36645471
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A central neural pathway controlling odor tracking in Drosophila.
    Slater G; Levy P; Chan KL; Larsen C
    J Neurosci; 2015 Feb; 35(5):1831-48. PubMed ID: 25653345
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Learning modifies odor mixture processing to improve detection of relevant components.
    Chen JY; Marachlian E; Assisi C; Huerta R; Smith BH; Locatelli F; Bazhenov M
    J Neurosci; 2015 Jan; 35(1):179-97. PubMed ID: 25568113
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Nonassociative plasticity alters competitive interactions among mixture components in early olfactory processing.
    Locatelli FF; Fernandez PC; Villareal F; Muezzinoglu K; Huerta R; Galizia CG; Smith BH
    Eur J Neurosci; 2013 Jan; 37(1):63-79. PubMed ID: 23167675
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Temporal features of spike trains in the moth antennal lobe revealed by a comparative time-frequency analysis.
    Capurro A; Baroni F; Kuebler LS; Kárpáti Z; Dekker T; Lei H; Hansson BS; Pearce TC; Olsson SB
    PLoS One; 2014; 9(1):e84037. PubMed ID: 24465391
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Chronic exposure to odors at naturally occurring concentrations triggers limited plasticity in early stages of
    Gugel ZV; Maurais EG; Hong EJ
    Elife; 2023 May; 12():. PubMed ID: 37195027
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Temporally specific engagement of distinct neuronal circuits regulating olfactory habituation in
    Semelidou O; Acevedo SF; Skoulakis EM
    Elife; 2018 Dec; 7():. PubMed ID: 30576281
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Novelty detection in early olfactory processing of the honey bee, Apis mellifera.
    Lei H; Haney S; Jernigan CM; Guo X; Cook CN; Bazhenov M; Smith BH
    PLoS One; 2022; 17(3):e0265009. PubMed ID: 35353837
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Neural encoding of rapidly fluctuating odors.
    Geffen MN; Broome BM; Laurent G; Meister M
    Neuron; 2009 Feb; 61(4):570-86. PubMed ID: 19249277
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A High-Bandwidth Dual-Channel Olfactory Stimulator for Studying Temporal Sensitivity of Olfactory Processing.
    Raiser G; Galizia CG; Szyszka P
    Chem Senses; 2017 Feb; 42(2):141-151. PubMed ID: 27988494
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Differential Processing by Two Olfactory Subsystems in the Honeybee Brain.
    Carcaud J; Giurfa M; Sandoz JC
    Neuroscience; 2018 Mar; 374():33-48. PubMed ID: 29374539
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.