BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 2320998)

  • 1. The accumulation of cadmium by vegetables grown on soils contaminated from a variety of sources.
    Alloway BJ; Jackson AP; Morgan H
    Sci Total Environ; 1990 Feb; 91():223-36. PubMed ID: 2320998
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cadmium accumulation in the edible parts of different cultivars of radish, Raphanus sativus L., and carrot, Daucus carota var. sativa, grown in a Cd-contaminated soil.
    Zheng RL; Li HF; Jiang RF; Zhang FS
    Bull Environ Contam Toxicol; 2008 Jul; 81(1):75-9. PubMed ID: 18392549
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Accumulation of cadmium in the edible parts of six vegetable species grown in Cd-contaminated soils.
    Yang Y; Zhang FS; Li HF; Jiang RF
    J Environ Manage; 2009 Feb; 90(2):1117-22. PubMed ID: 18583020
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Isolation of As-tolerant bacteria and their potentials of reducing As and Cd accumulation of edible tissues of vegetables in metal(loid)-contaminated soils.
    Wang X; Nie Z; He L; Wang Q; Sheng X
    Sci Total Environ; 2017 Feb; 579():179-189. PubMed ID: 27839757
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differences of cadmium absorption and accumulation in selected vegetable crops.
    Ni WZ; Yang XE; Long XX
    J Environ Sci (China); 2002 Jul; 14(3):399-405. PubMed ID: 12211993
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Increased biomass and quality and reduced heavy metal accumulation of edible tissues of vegetables in the presence of Cd-tolerant and immobilizing Bacillus megaterium H3.
    Wang Q; Zhang WJ; He LY; Sheng XF
    Ecotoxicol Environ Saf; 2018 Feb; 148():269-274. PubMed ID: 29069614
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cadmium accumulation characteristics and removal potentials of high cadmium accumulating rice line grown in cadmium-contaminated soils.
    Tang H; Li T; Yu H; Zhang X
    Environ Sci Pollut Res Int; 2016 Aug; 23(15):15351-7. PubMed ID: 27109113
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lead/cadmium contamination and lead isotopic ratios in vegetables grown in peri-urban and mining/smelting contaminated sites in Nanjing, China.
    Hu X; Ding Z
    Bull Environ Contam Toxicol; 2009 Jan; 82(1):80-4. PubMed ID: 18795215
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cadmium availability to wheat grain in soils treated with sewage sludge or metal salts.
    Chaudri A; McGrath S; Gibbs P; Chambers B; Carlton-Smith C; Godley A; Bacon J; Campbell C; Aitken M
    Chemosphere; 2007 Jan; 66(8):1415-23. PubMed ID: 17109920
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Content of metals in vegetables from various regions of Poland in the years 1986-1988. I. Content of lead, cadmium and mercury].
    Zawadzka T; Mazur H; Wojciechowska-Mazurek M; Starska K; Brulińska-Ostrowska E; Cwiek K; Umińska R; Bichniewicz A
    Rocz Panstw Zakl Hig; 1990; 41(3-4):111-31. PubMed ID: 2267551
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Integrated metagenomics and molecular ecological network analysis of bacterial community composition during the phytoremediation of cadmium-contaminated soils by bioenergy crops.
    Chen Z; Zheng Y; Ding C; Ren X; Yuan J; Sun F; Li Y
    Ecotoxicol Environ Saf; 2017 Nov; 145():111-118. PubMed ID: 28711820
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The assessment of air and soil as contributors of some trace metals to vegetable plants. II. Translocation of atmospheric and laboratory-generated cadmium aerosols to and within vegetable plants.
    Harrison RM; Chirgawi MB
    Sci Total Environ; 1989 Jul; 83(1-2):35-45. PubMed ID: 2781267
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prediction of cadmium concentration in selected home-produced vegetables.
    Bešter PK; Lobnik F; Eržen I; Kastelec D; Zupan M
    Ecotoxicol Environ Saf; 2013 Oct; 96():182-90. PubMed ID: 23886800
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cadmium in edible plants from Silesia, Poland, and its implications for health risk in populations.
    Dziubanek G; Baranowska R; Ćwieląg-Drabek M; Spychała A; Piekut A; Rusin M; Hajok I
    Ecotoxicol Environ Saf; 2017 Aug; 142():8-13. PubMed ID: 28376348
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Growth and Cd uptake by rice (Oryza sativa) in acidic and Cd-contaminated paddy soils amended with steel slag.
    He H; Tam NFY; Yao A; Qiu R; Li WC; Ye Z
    Chemosphere; 2017 Dec; 189():247-254. PubMed ID: 28942250
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sewage sludge as a source of cadmium in soil-plant-animal systems.
    Baker DE; Amacher MC; Leach RM
    Environ Health Perspect; 1979 Feb; 28():45-9. PubMed ID: 39747
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Accumulation of cadmium and uranium in arable soils in Switzerland.
    Bigalke M; Ulrich A; Rehmus A; Keller A
    Environ Pollut; 2017 Feb; 221():85-93. PubMed ID: 27908488
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of Vermicompost Amendment on the Accumulation and Chemical Forms of Trace Metals in Leafy Vegetables Grown in Contaminated Soils.
    Yen YS; Chen KS; Yang HY; Lai HY
    Int J Environ Res Public Health; 2021 Jun; 18(12):. PubMed ID: 34205439
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reducing the bioavailability of cadmium in contaminated soil by dithiocarbamate chitosan as a new remediation.
    Yin Z; Cao J; Li Z; Qiu D
    Environ Sci Pollut Res Int; 2015 Jul; 22(13):9668-75. PubMed ID: 25628112
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Absence of cadmium in the blood of horses fed oats grown on municipal sludge-amended soil.
    Maylin GA; Bache CA; Lisk DJ
    Sci Total Environ; 1990 Aug; 96(3):313-6. PubMed ID: 2237397
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.