These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

277 related articles for article (PubMed ID: 23210460)

  • 21. Prevention of mis-aminoacylation of a dual-specificity aminoacyl-tRNA synthetase.
    Lipman RS; Wang J; Sowers KR; Hou YM
    J Mol Biol; 2002 Feb; 315(5):943-9. PubMed ID: 11827467
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cross-editing by a tRNA synthetase allows vertebrates to abundantly express mischargeable tRNA without causing mistranslation.
    Chen M; Kuhle B; Diedrich J; Liu Z; Moresco JJ; Yates Iii JR; Pan T; Yang XL
    Nucleic Acids Res; 2020 Jul; 48(12):6445-6457. PubMed ID: 32484512
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A review on quality control agents of protein translation - The role of Trans-editing proteins.
    Jani J; Pappachan A
    Int J Biol Macromol; 2022 Feb; 199():252-263. PubMed ID: 34995670
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Functional role of the prokaryotic proline-tRNA synthetase insertion domain in amino acid editing.
    Wong FC; Beuning PJ; Nagan M; Shiba K; Musier-Forsyth K
    Biochemistry; 2002 Jun; 41(22):7108-15. PubMed ID: 12033945
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The fidelity of the translation of the genetic code.
    Sankaranarayanan R; Moras D
    Acta Biochim Pol; 2001; 48(2):323-35. PubMed ID: 11732604
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Distinct tRNA recognition strategies used by a homologous family of editing domains prevent mistranslation.
    Das M; Vargas-Rodriguez O; Goto Y; Suga H; Musier-Forsyth K
    Nucleic Acids Res; 2014 Apr; 42(6):3943-53. PubMed ID: 24371276
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Synthesis of cysteinyl-tRNACys by a prolyl-tRNA synthetase.
    Zhang CM; Hou YM
    RNA Biol; 2004 May; 1(1):35-41. PubMed ID: 17194940
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [tRNA-dependent editing of errors by prolyl-tRNA synthetase from bacteria Enterococcus faecalis].
    Boiarshin KS; KriklivyÄ­ IA; Tukalo MA
    Ukr Biokhim Zh (1999); 2008; 80(6):52-9. PubMed ID: 19351057
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Species-specific differences in the operational RNA code for aminoacylation of tRNAPro.
    Stehlin C; Burke B; Yang F; Liu H; Shiba K; Musier-Forsyth K
    Biochemistry; 1998 Jun; 37(23):8605-13. PubMed ID: 9622512
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Functional guanine-arginine interaction between tRNAPro and prolyl-tRNA synthetase that couples binding and catalysis.
    Burke B; An S; Musier-Forsyth K
    Biochim Biophys Acta; 2008 Sep; 1784(9):1222-5. PubMed ID: 18513497
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Strictly conserved lysine of prolyl-tRNA Synthetase editing domain facilitates binding and positioning of misacylated tRNA(Pro.).
    Bartholow TG; Sanford BL; Cao B; Schmit HL; Johnson JM; Meitzner J; Bhattacharyya S; Musier-Forsyth K; Hati S
    Biochemistry; 2014 Feb; 53(6):1059-68. PubMed ID: 24450765
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Human
    Vargas-Rodriguez O; Bakhtina M; McGowan D; Abid J; Goto Y; Suga H; Musier-Forsyth K
    J Biol Chem; 2020 Nov; 295(48):16180-16190. PubMed ID: 33051185
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Quality control in tRNA charging -- editing of homocysteine.
    Jakubowski H
    Acta Biochim Pol; 2011; 58(2):149-63. PubMed ID: 21643559
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Negative catalysis by the editing domain of class I aminoacyl-tRNA synthetases.
    Zivkovic I; Ivkovic K; Cvetesic N; Marsavelski A; Gruic-Sovulj I
    Nucleic Acids Res; 2022 Apr; 50(7):4029-4041. PubMed ID: 35357484
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Synthetic and editing mechanisms of aminoacyl-tRNA synthetases.
    Perona JJ; Gruic-Sovulj I
    Top Curr Chem; 2014; 344():1-41. PubMed ID: 23852030
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Structural basis of tRNAPro acceptor stem recognition by a bacterial trans-editing domain.
    Ma X; Bakhtina M; Shulgina I; Cantara WA; Kuzmishin Nagy AB; Goto Y; Suga H; Foster MP; Musier-Forsyth K
    Nucleic Acids Res; 2023 May; 51(8):3988-3999. PubMed ID: 36951109
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Hydrolytic editing by a class II aminoacyl-tRNA synthetase.
    Beuning PJ; Musier-Forsyth K
    Proc Natl Acad Sci U S A; 2000 Aug; 97(16):8916-20. PubMed ID: 10922054
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Structural diversity and protein engineering of the aminoacyl-tRNA synthetases.
    Perona JJ; Hadd A
    Biochemistry; 2012 Nov; 51(44):8705-29. PubMed ID: 23075299
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The tRNA A76 Hydroxyl Groups Control Partitioning of the tRNA-dependent Pre- and Post-transfer Editing Pathways in Class I tRNA Synthetase.
    Cvetesic N; Bilus M; Gruic-Sovulj I
    J Biol Chem; 2015 May; 290(22):13981-91. PubMed ID: 25873392
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Restoring species-specific posttransfer editing activity to a synthetase with a defunct editing domain.
    SternJohn J; Hati S; Siliciano PG; Musier-Forsyth K
    Proc Natl Acad Sci U S A; 2007 Feb; 104(7):2127-32. PubMed ID: 17283340
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.