BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 23210478)

  • 1. Optimization-based inference for temporally evolving networks with applications in biology.
    Chang YH; Gray J; Tomlin C
    J Comput Biol; 2012 Dec; 19(12):1307-23. PubMed ID: 23210478
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inferring biomolecular interaction networks based on convex optimization.
    Han S; Yoon Y; Cho KH
    Comput Biol Chem; 2007 Oct; 31(5-6):347-54. PubMed ID: 17890159
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An integer optimization algorithm for robust identification of non-linear gene regulatory networks.
    Chemmangattuvalappil N; Task K; Banerjee I
    BMC Syst Biol; 2012 Sep; 6():119. PubMed ID: 22937832
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exact reconstruction of gene regulatory networks using compressive sensing.
    Chang YH; Gray JW; Tomlin CJ
    BMC Bioinformatics; 2014 Dec; 15(1):400. PubMed ID: 25495633
    [TBL] [Abstract][Full Text] [Related]  

  • 5. lionessR: single sample network inference in R.
    Kuijjer ML; Hsieh PH; Quackenbush J; Glass K
    BMC Cancer; 2019 Oct; 19(1):1003. PubMed ID: 31653243
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Integrating Bayesian variable selection with Modular Response Analysis to infer biochemical network topology.
    Santra T; Kolch W; Kholodenko BN
    BMC Syst Biol; 2013 Jul; 7():57. PubMed ID: 23829771
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inferring gene regulatory networks via nonlinear state-space models and exploiting sparsity.
    Noor A; Serpedin E; Nounou M; Nounou HN
    IEEE/ACM Trans Comput Biol Bioinform; 2012; 9(4):1203-11. PubMed ID: 22350207
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Sparse Reconstruction Approach for Identifying Gene Regulatory Networks Using Steady-State Experiment Data.
    Zhang W; Zhou T
    PLoS One; 2015; 10(7):e0130979. PubMed ID: 26207991
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In Silico Evolution of Signaling Networks Using Rule-Based Models: Bistable Response Dynamics.
    Feng S; Soyer OS
    Methods Mol Biol; 2019; 1945():315-339. PubMed ID: 30945254
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Context Specificity in Causal Signaling Networks Revealed by Phosphoprotein Profiling.
    Hill SM; Nesser NK; Johnson-Camacho K; Jeffress M; Johnson A; Boniface C; Spencer SE; Lu Y; Heiser LM; Lawrence Y; Pande NT; Korkola JE; Gray JW; Mills GB; Mukherjee S; Spellman PT
    Cell Syst; 2017 Jan; 4(1):73-83.e10. PubMed ID: 28017544
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reverse engineering module networks by PSO-RNN hybrid modeling.
    Zhang Y; Xuan J; de los Reyes BG; Clarke R; Ressom HW
    BMC Genomics; 2009 Jul; 10 Suppl 1(Suppl 1):S15. PubMed ID: 19594874
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multimodal networks: structure and operations.
    Heath LS; Sioson AA
    IEEE/ACM Trans Comput Biol Bioinform; 2009; 6(2):321-32. PubMed ID: 19407355
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biological Network Inference from Microarray Data, Current Solutions, and Assessments.
    Roy S; Guzzi PH
    Methods Mol Biol; 2016; 1375():155-67. PubMed ID: 26507508
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A network inference workflow applied to virulence-related processes in Salmonella typhimurium.
    Taylor RC; Singhal M; Weller J; Khoshnevis S; Shi L; McDermott J
    Ann N Y Acad Sci; 2009 Mar; 1158():143-58. PubMed ID: 19348639
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multi-Objective Optimization Algorithm to Discover Condition-Specific Modules in Multiple Networks.
    Ma X; Sun P; Zhao J
    Molecules; 2017 Dec; 22(12):. PubMed ID: 29240706
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Generating realistic in silico gene networks for performance assessment of reverse engineering methods.
    Marbach D; Schaffter T; Mattiussi C; Floreano D
    J Comput Biol; 2009 Feb; 16(2):229-39. PubMed ID: 19183003
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular pathway identification using biological network-regularized logistic models.
    Zhang W; Wan YW; Allen GI; Pang K; Anderson ML; Liu Z
    BMC Genomics; 2013; 14 Suppl 8(Suppl 8):S7. PubMed ID: 24564637
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Integrated inference and analysis of regulatory networks from multi-level measurements.
    Poultney CS; Greenfield A; Bonneau R
    Methods Cell Biol; 2012; 110():19-56. PubMed ID: 22482944
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gene expression complex networks: synthesis, identification, and analysis.
    Lopes FM; Cesar RM; Costa Lda F
    J Comput Biol; 2011 Oct; 18(10):1353-67. PubMed ID: 21548810
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A computational framework for qualitative simulation of nonlinear dynamical models of gene-regulatory networks.
    Ironi L; Panzeri L
    BMC Bioinformatics; 2009 Oct; 10 Suppl 12(Suppl 12):S14. PubMed ID: 19828074
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.