BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

400 related articles for article (PubMed ID: 23210518)

  • 1. Designing enzyme-like catalysts: a rhodium(II) metallopeptide case study.
    Ball ZT
    Acc Chem Res; 2013 Feb; 46(2):560-70. PubMed ID: 23210518
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sequence-specific inhibition of a designed metallopeptide catalyst.
    Popp BV; Chen Z; Ball ZT
    Chem Commun (Camb); 2012 Aug; 48(60):7492-4. PubMed ID: 22728748
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Beyond the Second Coordination Sphere: Engineering Dirhodium Artificial Metalloenzymes To Enable Protein Control of Transition Metal Catalysis.
    Lewis JC
    Acc Chem Res; 2019 Mar; 52(3):576-584. PubMed ID: 30830755
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design of biomimetic catalysts by molecular imprinting in synthetic polymers: the role of transition state stabilization.
    Wulff G; Liu J
    Acc Chem Res; 2012 Feb; 45(2):239-47. PubMed ID: 21967389
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular recognition in protein modification with rhodium metallopeptides.
    Ball ZT
    Curr Opin Chem Biol; 2015 Apr; 25():98-102. PubMed ID: 25588960
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Screening rhodium metallopeptide libraries "on bead": asymmetric cyclopropanation and a solution to the enantiomer problem.
    Sambasivan R; Ball ZT
    Angew Chem Int Ed Engl; 2012 Aug; 51(34):8568-72. PubMed ID: 22777868
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Helix induction by dirhodium: access to biocompatible metallopeptides with defined secondary structure.
    Zaykov AN; Popp BV; Ball ZT
    Chemistry; 2010 Jun; 16(22):6651-9. PubMed ID: 20411535
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Studies of asymmetric styrene cyclopropanation with a rhodium(II) metallopeptide catalyst developed with a high-throughput screen.
    Sambasivan R; Ball ZT
    Chirality; 2013 Sep; 25(9):493-7. PubMed ID: 23749505
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Artificial metalloenzymes via encapsulation of hydrophobic transition-metal catalysts in surface-crosslinked micelles (SCMs).
    Zhang S; Zhao Y
    Chem Commun (Camb); 2012 Oct; 48(80):9998-10000. PubMed ID: 22935642
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enzyme Activity by Design: An Artificial Rhodium Hydroformylase for Linear Aldehydes.
    Jarvis AG; Obrecht L; Deuss PJ; Laan W; Gibson EK; Wells PP; Kamer PCJ
    Angew Chem Int Ed Engl; 2017 Oct; 56(44):13596-13600. PubMed ID: 28841767
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Hexa-rhodium Metallopeptide Catalyst for Site-Specific Functionalization of Natural Antibodies.
    Ohata J; Ball ZT
    J Am Chem Soc; 2017 Sep; 139(36):12617-12622. PubMed ID: 28810739
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bioinspired catalyst design and artificial metalloenzymes.
    Deuss PJ; den Heeten R; Laan W; Kamer PC
    Chemistry; 2011 Apr; 17(17):4680-98. PubMed ID: 21480401
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Site-specific protein modification with a dirhodium metallopeptide catalyst.
    Chen Z; Popp BV; Bovet CL; Ball ZT
    ACS Chem Biol; 2011 Sep; 6(9):920-5. PubMed ID: 21671614
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Directed Evolution of Artificial Metalloenzymes: A Universal Means to Tune the Selectivity of Transition Metal Catalysts?
    Reetz MT
    Acc Chem Res; 2019 Feb; 52(2):336-344. PubMed ID: 30689339
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Supramolecular bidentate ligands by metal-directed in situ formation of antiparallel beta-sheet structures and application in asymmetric catalysis.
    Laungani AC; Slattery JM; Krossing I; Breit B
    Chemistry; 2008; 14(15):4488-502. PubMed ID: 18449870
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Catalytic protein modification with dirhodium metallopeptides: specificity in designed and natural systems.
    Chen Z; Vohidov F; Coughlin JM; Stagg LJ; Arold ST; Ladbury JE; Ball ZT
    J Am Chem Soc; 2012 Jun; 134(24):10138-45. PubMed ID: 22621321
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chemical Posttranslational Modification with Designed Rhodium(II) Catalysts.
    Martin SC; Minus MB; Ball ZT
    Methods Enzymol; 2016; 580():1-19. PubMed ID: 27586326
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metallopeptide catalysts and artificial metalloenzymes containing unnatural amino acids.
    Lewis JC
    Curr Opin Chem Biol; 2015 Apr; 25():27-35. PubMed ID: 25545848
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rhodium(II) metallopeptide catalyst design enables fine control in selective functionalization of natural SH3 domains.
    Vohidov F; Coughlin JM; Ball ZT
    Angew Chem Int Ed Engl; 2015 Apr; 54(15):4587-91. PubMed ID: 25688989
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Femtomolar Zn(II) affinity in a peptide-based ligand designed to model thiolate-rich metalloprotein active sites.
    Petros AK; Reddi AR; Kennedy ML; Hyslop AG; Gibney BR
    Inorg Chem; 2006 Dec; 45(25):9941-58. PubMed ID: 17140191
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.