These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
194 related articles for article (PubMed ID: 23210830)
1. Role of statistical properties of randomly rough surfaces in controlling superhydrophobicity. Bottiglione F; Carbone G Langmuir; 2013 Jan; 29(2):599-609. PubMed ID: 23210830 [TBL] [Abstract][Full Text] [Related]
2. An effective medium approach to predict the apparent contact angle of drops on super-hydrophobic randomly rough surfaces. Bottiglione F; Carbone G J Phys Condens Matter; 2015 Jan; 27(1):015009. PubMed ID: 25469488 [TBL] [Abstract][Full Text] [Related]
3. Effect of drop volume and surface statistics on the superhydrophobicity of randomly rough substrates. Afferrante L; Carbone G J Phys Condens Matter; 2018 Jan; 30(4):045001. PubMed ID: 29231182 [TBL] [Abstract][Full Text] [Related]
4. Range of applicability of the Wenzel and Cassie-Baxter equations for superhydrophobic surfaces. Erbil HY; Cansoy CE Langmuir; 2009 Dec; 25(24):14135-45. PubMed ID: 19630435 [TBL] [Abstract][Full Text] [Related]
5. The role of multiscale roughness in the Lotus effect: is it essential for super-hydrophobicity? Bittoun E; Marmur A Langmuir; 2012 Oct; 28(39):13933-42. PubMed ID: 22946829 [TBL] [Abstract][Full Text] [Related]
6. Mean-field theory of liquid droplets on roughened solid surfaces: application to superhydrophobicity. Porcheron F; Monson PA Langmuir; 2006 Feb; 22(4):1595-601. PubMed ID: 16460079 [TBL] [Abstract][Full Text] [Related]
7. Nanostructures increase water droplet adhesion on hierarchically rough superhydrophobic surfaces. Teisala H; Tuominen M; Aromaa M; Stepien M; Mäkelä JM; Saarinen JJ; Toivakka M; Kuusipalo J Langmuir; 2012 Feb; 28(6):3138-45. PubMed ID: 22263866 [TBL] [Abstract][Full Text] [Related]
8. Surfactant solutions and porous substrates: spreading and imbibition. Starov VM Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660 [TBL] [Abstract][Full Text] [Related]
9. Transition between superhydrophobic states on rough surfaces. Patankar NA Langmuir; 2004 Aug; 20(17):7097-102. PubMed ID: 15301493 [TBL] [Abstract][Full Text] [Related]
10. Correlation between superhydrophobicity and the power spectral density of randomly rough surfaces. Awada H; Grignard B; Jérôme C; Vaillant A; De Coninck J; Nysten B; Jonas AM Langmuir; 2010 Dec; 26(23):17798-803. PubMed ID: 21058677 [TBL] [Abstract][Full Text] [Related]
11. Dynamic wetting and spreading and the role of topography. McHale G; Newton MI; Shirtcliffe NJ J Phys Condens Matter; 2009 Nov; 21(46):464122. PubMed ID: 21715886 [TBL] [Abstract][Full Text] [Related]
12. Microscopic description of a drop on a solid surface. Ruckenstein E; Berim GO Adv Colloid Interface Sci; 2010 Jun; 157(1-2):1-33. PubMed ID: 20362270 [TBL] [Abstract][Full Text] [Related]
13. Preventing the Cassie-Wenzel transition using surfaces with noncommunicating roughness elements. Bahadur V; Garimella SV Langmuir; 2009 Apr; 25(8):4815-20. PubMed ID: 19260655 [TBL] [Abstract][Full Text] [Related]
14. Contact angle hysteresis on randomly rough surfaces: a computational study. David R; Neumann AW Langmuir; 2013 Apr; 29(14):4551-8. PubMed ID: 23506209 [TBL] [Abstract][Full Text] [Related]