These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 23210830)

  • 21. Thermodynamic modeling of contact angles on rough, heterogeneous surfaces.
    Long J; Hyder MN; Huang RY; Chen P
    Adv Colloid Interface Sci; 2005 Dec; 118(1-3):173-90. PubMed ID: 16154106
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Spontaneous recovery of superhydrophobicity on nanotextured surfaces.
    Prakash S; Xi E; Patel AJ
    Proc Natl Acad Sci U S A; 2016 May; 113(20):5508-13. PubMed ID: 27140619
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Water droplet motion control on superhydrophobic surfaces: exploiting the Wenzel-to-Cassie transition.
    Liu G; Fu L; Rode AV; Craig VS
    Langmuir; 2011 Mar; 27(6):2595-600. PubMed ID: 21322574
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Nanodrop on a nanorough solid surface: density functional theory considerations.
    Berim GO; Ruckenstein E
    J Chem Phys; 2008 Jul; 129(1):014708. PubMed ID: 18624497
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Bioinspired super-antiwetting interfaces with special liquid-solid adhesion.
    Liu M; Zheng Y; Zhai J; Jiang L
    Acc Chem Res; 2010 Mar; 43(3):368-77. PubMed ID: 19954162
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Microstructured superhydrorepellent surfaces: effect of drop pressure on fakir-state stability and apparent contact angles.
    Afferrante L; Carbone G
    J Phys Condens Matter; 2010 Aug; 22(32):325107. PubMed ID: 21386489
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Superhydrophobicity and liquid repellency of solutions on polypropylene.
    Rioboo R; Delattre B; Duvivier D; Vaillant A; De Coninck J
    Adv Colloid Interface Sci; 2012 Jul; 175():1-10. PubMed ID: 22483352
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Surface activity of solid particles with extremely rough surfaces.
    Nonomura Y; Komura S
    J Colloid Interface Sci; 2008 Jan; 317(2):501-6. PubMed ID: 17936775
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Two types of Cassie-to-Wenzel wetting transitions on superhydrophobic surfaces during drop impact.
    Lee C; Nam Y; Lastakowski H; Hur JI; Shin S; Biance AL; Pirat C; Kim CJ; Ybert C
    Soft Matter; 2015 Jun; 11(23):4592-9. PubMed ID: 25959867
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Fractal Model for Wettability of Rough Surfaces.
    Jain R; Pitchumani R
    Langmuir; 2017 Jul; 33(28):7181-7190. PubMed ID: 28635291
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Drop size effect on contact angle explained by nonextensive thermodynamics. Young's equation revisited.
    Letellier P; Mayaffre A; Turmine M
    J Colloid Interface Sci; 2007 Oct; 314(2):604-14. PubMed ID: 17624363
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Influence of nanoscale particle roughness on the stability of Pickering emulsions.
    San-Miguel A; Behrens SH
    Langmuir; 2012 Aug; 28(33):12038-43. PubMed ID: 22846043
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The preparation of superhydrophobic surfaces of hierarchical silicon nanowire structures.
    Kuan WF; Chen LJ
    Nanotechnology; 2009 Jan; 20(3):035605. PubMed ID: 19417300
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Self-affine roughness influence on the friction coefficient for rubbers onto solid surfaces.
    Palasantzas G
    J Chem Phys; 2004 Feb; 120(6):2889-92. PubMed ID: 15268436
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Electrowetting-based control of droplet transition and morphology on artificially microstructured surfaces.
    Bahadur V; Garimella SV
    Langmuir; 2008 Aug; 24(15):8338-45. PubMed ID: 18598067
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Theoretical investigations on the superhydrophobicity of intrinsic hydrophilic surfaces with overhang microstructures.
    Xu P; Bai JR; Zhou P; Wang LL; Sun XN; Wei L; Zhou QF
    RSC Adv; 2022 Jan; 12(5):2701-2711. PubMed ID: 35425330
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The rose petal effect and the modes of superhydrophobicity.
    Bhushan B; Nosonovsky M
    Philos Trans A Math Phys Eng Sci; 2010 Oct; 368(1929):4713-28. PubMed ID: 20855317
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Thermodynamic analysis on wetting states and wetting state transitions of rough surfaces.
    Jiang Y; Lian J; Jiang Z; Li Y; Wen C
    Adv Colloid Interface Sci; 2020 Apr; 278():102136. PubMed ID: 32171897
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effects of Hierarchical Surface Roughness on Droplet Contact Angle.
    Bell MS; Shahraz A; Fichthorn KA; Borhan A
    Langmuir; 2015 Jun; 31(24):6752-62. PubMed ID: 26030089
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Wrinkled, dual-scale structures of diamond-like carbon (DLC) for superhydrophobicity.
    Rahmawan Y; Moon MW; Kim KS; Lee KR; Suh KY
    Langmuir; 2010 Jan; 26(1):484-91. PubMed ID: 19810723
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.