These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 23210850)

  • 1. Multi-aspect candidates for repositioning: data fusion methods using heterogeneous information sources.
    Arany Á; Bolgár B; Balogh B; Antal P; Mátyus P
    Curr Med Chem; 2013; 20(1):95-107. PubMed ID: 23210850
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Drug-Target Network-Based Supervised Machine Learning Repurposing Method Allowing the Use of Multiple Heterogeneous Information Sources.
    Nascimento ACA; Prudêncio RBC; Costa IG
    Methods Mol Biol; 2019; 1903():281-289. PubMed ID: 30547449
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Drug repositioning for treatment of movement disorders: from serendipity to rational discovery strategies.
    Bolgár B; Arany Á; Temesi G; Balogh B; Antal P; Mátyus P
    Curr Top Med Chem; 2013; 13(18):2337-63. PubMed ID: 24059461
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Early repositioning through compound set enrichment analysis: a knowledge-recycling strategy.
    Temesi G; Bolgár B; Arany A; Szalai C; Antal P; Mátyus P
    Future Med Chem; 2014 Apr; 6(5):563-75. PubMed ID: 24649958
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Similarity-based prediction for Anatomical Therapeutic Chemical classification of drugs by integrating multiple data sources.
    Liu Z; Guo F; Gu J; Wang Y; Li Y; Wang D; Lu L; Li D; He F
    Bioinformatics; 2015 Jun; 31(11):1788-95. PubMed ID: 25638810
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predicting targeted polypharmacology for drug repositioning and multi- target drug discovery.
    Liu X; Zhu F; Ma XH; Shi Z; Yang SY; Wei YQ; Chen YZ
    Curr Med Chem; 2013; 20(13):1646-61. PubMed ID: 23410165
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Drug repositioning based on the heterogeneous information fusion graph convolutional network.
    Cai L; Lu C; Xu J; Meng Y; Wang P; Fu X; Zeng X; Su Y
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34378011
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A two-tiered unsupervised clustering approach for drug repositioning through heterogeneous data integration.
    Hameed PN; Verspoor K; Kusljic S; Halgamuge S
    BMC Bioinformatics; 2018 Apr; 19(1):129. PubMed ID: 29642848
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mining heterogeneous network for drug repositioning using phenotypic information extracted from social media and pharmaceutical databases.
    Yang CC; Zhao M
    Artif Intell Med; 2019 May; 96():80-92. PubMed ID: 31164213
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deep fusion learning facilitates anatomical therapeutic chemical recognition in drug repurposing and discovery.
    Wang X; Liu M; Zhang Y; He S; Qin C; Li Y; Lu T
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34368838
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Toward better drug repositioning: prioritizing and integrating existing methods into efficient pipelines.
    Jin G; Wong ST
    Drug Discov Today; 2014 May; 19(5):637-44. PubMed ID: 24239728
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Drug repositioning by kernel-based integration of molecular structure, molecular activity, and phenotype data.
    Wang Y; Chen S; Deng N; Wang Y
    PLoS One; 2013; 8(11):e78518. PubMed ID: 24244318
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Scoring multiple features to predict drug disease associations using information fusion and aggregation.
    Moghadam H; Rahgozar M; Gharaghani S
    SAR QSAR Environ Res; 2016 Aug; 27(8):609-28. PubMed ID: 27455069
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kernel-based data fusion improves the drug-protein interaction prediction.
    Wang YC; Zhang CH; Deng NY; Wang Y
    Comput Biol Chem; 2011 Dec; 35(6):353-62. PubMed ID: 22099632
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Realizing drug repositioning by adapting a recommendation system to handle the process.
    Ozsoy MG; Özyer T; Polat F; Alhajj R
    BMC Bioinformatics; 2018 Apr; 19(1):136. PubMed ID: 29649971
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of drug candidates and repurposing opportunities through compound-target interaction networks.
    Cichonska A; Rousu J; Aittokallio T
    Expert Opin Drug Discov; 2015 Dec; 10(12):1333-45. PubMed ID: 26429153
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Network-based drug repositioning.
    Wu Z; Wang Y; Chen L
    Mol Biosyst; 2013 Jun; 9(6):1268-81. PubMed ID: 23493874
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Disease comorbidity-guided drug repositioning: a case study in schizophrenia.
    Wang Q; Xu R
    AMIA Annu Symp Proc; 2018; 2018():1300-1309. PubMed ID: 30815174
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Drug Repositioning: A Unique Approach to Refurbish Drug Discovery.
    Kale MA; Shamkuwar PB; Mourya VK; Deshpande AB; Shelke PA
    Curr Drug Discov Technol; 2022; 19(1):e140122192307. PubMed ID: 33726652
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Drug repositioning: a brief overview.
    Jourdan JP; Bureau R; Rochais C; Dallemagne P
    J Pharm Pharmacol; 2020 Sep; 72(9):1145-1151. PubMed ID: 32301512
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.