BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 23210995)

  • 1. Proteomic analysis of Clostridium thermocellum ATCC 27405 reveals the upregulation of an alternative transhydrogenase-malate pathway and nitrogen assimilation in cells grown on cellulose.
    Burton E; Martin VJ
    Can J Microbiol; 2012 Dec; 58(12):1378-88. PubMed ID: 23210995
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reassessment of the transhydrogenase/malate shunt pathway in Clostridium thermocellum ATCC 27405 through kinetic characterization of malic enzyme and malate dehydrogenase.
    Taillefer M; Rydzak T; Levin DB; Oresnik IJ; Sparling R
    Appl Environ Microbiol; 2015 Apr; 81(7):2423-32. PubMed ID: 25616802
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impact of pretreated Switchgrass and biomass carbohydrates on Clostridium thermocellum ATCC 27405 cellulosome composition: a quantitative proteomic analysis.
    Raman B; Pan C; Hurst GB; Rodriguez M; McKeown CK; Lankford PK; Samatova NF; Mielenz JR
    PLoS One; 2009; 4(4):e5271. PubMed ID: 19384422
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Expression of 17 genes in Clostridium thermocellum ATCC 27405 during fermentation of cellulose or cellobiose in continuous culture.
    Stevenson DM; Weimer PJ
    Appl Environ Microbiol; 2005 Aug; 71(8):4672-8. PubMed ID: 16085862
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Proteomic analysis of Clostridium thermocellum core metabolism: relative protein expression profiles and growth phase-dependent changes in protein expression.
    Rydzak T; McQueen PD; Krokhin OV; Spicer V; Ezzati P; Dwivedi RC; Shamshurin D; Levin DB; Wilkins JA; Sparling R
    BMC Microbiol; 2012 Sep; 12():214. PubMed ID: 22994686
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Global view of the Clostridium thermocellum cellulosome revealed by quantitative proteomic analysis.
    Gold ND; Martin VJ
    J Bacteriol; 2007 Oct; 189(19):6787-95. PubMed ID: 17644599
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CO2-fixing one-carbon metabolism in a cellulose-degrading bacterium Clostridium thermocellum.
    Xiong W; Lin PP; Magnusson L; Warner L; Liao JC; Maness PC; Chou KJ
    Proc Natl Acad Sci U S A; 2016 Nov; 113(46):13180-13185. PubMed ID: 27794122
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nitrogen and sulfur requirements for Clostridium thermocellum and Caldicellulosiruptor bescii on cellulosic substrates in minimal nutrient media.
    Kridelbaugh DM; Nelson J; Engle NL; Tschaplinski TJ; Graham DE
    Bioresour Technol; 2013 Feb; 130():125-35. PubMed ID: 23306120
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Roles of Nicotinamide Adenine Dinucleotide Phosphate Reoxidation and Ammonium Assimilation in the Secretion of Amino Acids as Byproducts of Clostridium thermocellum.
    Yayo J; Rydzak T; Kuil T; Karlsson A; Harding DJ; Guss AM; van Maris AJA
    Appl Environ Microbiol; 2023 Jan; 89(1):e0175322. PubMed ID: 36625594
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineering cellulolytic bacterium Clostridium thermocellum to co-ferment cellulose- and hemicellulose-derived sugars simultaneously.
    Xiong W; Reyes LH; Michener WE; Maness PC; Chou KJ
    Biotechnol Bioeng; 2018 Jul; 115(7):1755-1763. PubMed ID: 29537062
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Closing the carbon balance for fermentation by Clostridium thermocellum (ATCC 27405).
    Ellis LD; Holwerda EK; Hogsett D; Rogers S; Shao X; Tschaplinski T; Thorne P; Lynd LR
    Bioresour Technol; 2012 Jan; 103(1):293-9. PubMed ID: 22055095
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mutant selection and phenotypic and genetic characterization of ethanol-tolerant strains of Clostridium thermocellum.
    Shao X; Raman B; Zhu M; Mielenz JR; Brown SD; Guss AM; Lynd LR
    Appl Microbiol Biotechnol; 2011 Nov; 92(3):641-52. PubMed ID: 21874277
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Global gene expression patterns in Clostridium thermocellum as determined by microarray analysis of chemostat cultures on cellulose or cellobiose.
    Riederer A; Takasuka TE; Makino S; Stevenson DM; Bukhman YV; Elsen NL; Fox BG
    Appl Environ Microbiol; 2011 Feb; 77(4):1243-53. PubMed ID: 21169455
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermodynamic analysis of the pathway for ethanol production from cellobiose in Clostridium thermocellum.
    Dash S; Olson DG; Joshua Chan SH; Amador-Noguez D; Lynd LR; Maranas CD
    Metab Eng; 2019 Sep; 55():161-169. PubMed ID: 31220663
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transcriptomic and proteomic analyses of core metabolism in Clostridium termitidis CT1112 during growth on α-cellulose, xylan, cellobiose and xylose.
    Munir RI; Spicer V; Krokhin OV; Shamshurin D; Zhang X; Taillefer M; Blunt W; Cicek N; Sparling R; Levin DB
    BMC Microbiol; 2016 May; 16():91. PubMed ID: 27215540
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Atypical glycolysis in Clostridium thermocellum.
    Zhou J; Olson DG; Argyros DA; Deng Y; van Gulik WM; van Dijken JP; Lynd LR
    Appl Environ Microbiol; 2013 May; 79(9):3000-8. PubMed ID: 23435896
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transcriptomic analysis of Clostridium thermocellum ATCC 27405 cellulose fermentation.
    Raman B; McKeown CK; Rodriguez M; Brown SD; Mielenz JR
    BMC Microbiol; 2011 Jun; 11():134. PubMed ID: 21672225
    [TBL] [Abstract][Full Text] [Related]  

  • 18. LacI Transcriptional Regulatory Networks in Clostridium thermocellum DSM1313.
    Wilson CM; Klingeman DM; Schlachter C; Syed MH; Wu CW; Guss AM; Brown SD
    Appl Environ Microbiol; 2017 Mar; 83(5):. PubMed ID: 28003194
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metabolic Fluxes of Nitrogen and Pyrophosphate in Chemostat Cultures of Clostridium thermocellum and Thermoanaerobacterium saccharolyticum.
    Holwerda EK; Zhou J; Hon S; Stevenson DM; Amador-Noguez D; Lynd LR; van Dijken JP
    Appl Environ Microbiol; 2020 Nov; 86(23):. PubMed ID: 32978139
    [No Abstract]   [Full Text] [Related]  

  • 20. Contributing factors in the improvement of cellulosic H2 production in Clostridium thermocellum/Thermoanaerobacterium co-cultures.
    Wang M; Zhao Q; Li L; Niu K; Li Y; Wang F; Jiang B; Liu K; Jiang Y; Fang X
    Appl Microbiol Biotechnol; 2016 Oct; 100(19):8607-20. PubMed ID: 27538932
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.