These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 23211061)

  • 1. Theoretical study of the structure and assembly of Janus rods.
    Tripathy M; Schweizer KS
    J Phys Chem B; 2013 Jan; 117(1):373-84. PubMed ID: 23211061
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A theoretical study of structure and thermodynamics of fluids with long-range competing interactions exhibiting pattern formation.
    Bomont JM; Costa D
    J Chem Phys; 2012 Oct; 137(16):164901. PubMed ID: 23126737
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On the importance of thermodynamic self-consistency for calculating clusterlike pair correlations in hard-core double Yukawa fluids.
    Kim JM; Castañeda-Priego R; Liu Y; Wagner NJ
    J Chem Phys; 2011 Feb; 134(6):064904. PubMed ID: 21322731
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Haloing, flocculation, and bridging in colloid-nanoparticle suspensions.
    Scheer EN; Schweizer KS
    J Chem Phys; 2008 Apr; 128(16):164905. PubMed ID: 18447498
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure of sodium glycodeoxycholate micellar aggregates from small-angle X-ray scattering and light-scattering techniques.
    Cozzolino S; Galantini L; Giglio E; Hoffmann S; Leggio C; Pavel NV
    J Phys Chem B; 2006 Jun; 110(25):12351-9. PubMed ID: 16800558
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phase behavior of a fluid with competing attractive and repulsive interactions.
    Archer AJ; Wilding NB
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Sep; 76(3 Pt 1):031501. PubMed ID: 17930245
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phase behavior and bulk structural properties of a microphase former with anisotropic competing interactions: A density functional theory study.
    Stopper D; Roth R
    Phys Rev E; 2017 Oct; 96(4-1):042607. PubMed ID: 29347593
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of the number and placement of polymer tethers on the structure of concentrated solutions and melts of hybrid nanoparticles.
    Jayaraman A; Schweizer KS
    Langmuir; 2008 Oct; 24(19):11119-30. PubMed ID: 18729491
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure and assembly of dense solutions and melts of single tethered nanoparticles.
    Jayaraman A; Schweizer KS
    J Chem Phys; 2008 Apr; 128(16):164904. PubMed ID: 18447497
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two-dimensional systems with competing interactions: microphase formation versus liquid-vapour phase separation.
    Schwanzer DF; Kahl G
    J Phys Condens Matter; 2010 Oct; 22(41):415103. PubMed ID: 21386593
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Clustering and mobility of hard rods in a quasicrystalline substrate potential.
    Kählitz P; Schoen M; Stark H
    J Chem Phys; 2012 Dec; 137(22):224705. PubMed ID: 23249024
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Equilibrium Phase Behavior of a Continuous-Space Microphase Former.
    Zhuang Y; Zhang K; Charbonneau P
    Phys Rev Lett; 2016 Mar; 116(9):098301. PubMed ID: 26991204
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effective forces in colloidal mixtures: from depletion attraction to accumulation repulsion.
    Louis AA; Allahyarov E; Löwen H; Roth R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Jun; 65(6 Pt 1):061407. PubMed ID: 12188722
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Crystallization limits of the two-term Yukawa potentials based on the entropy criterion.
    Lee LL; Hara MC; Simon SJ; Ramos FS; Winkle AJ; Bomont JM
    J Chem Phys; 2010 Feb; 132(7):074505. PubMed ID: 20170235
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Polymer-mediated spatial organization of nanoparticles in dense melts: Transferability and an effective one-component approach.
    Chakrabarti R; Schweizer KS
    J Chem Phys; 2010 Oct; 133(14):144905. PubMed ID: 20950039
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Attraction-driven disorder in a hard-core colloidal monolayer.
    Huerta A; Naumis GG; Wasan DT; Henderson D; Trokhymchuk A
    J Chem Phys; 2004 Jan; 120(3):1506-10. PubMed ID: 15268276
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Measurement of density distributions for colloidal beta-FeOOH rods in suspensions exhibiting phase separation: the role of long-range forces in smectic ordering.
    Maeda H; Maeda Y
    J Chem Phys; 2004 Dec; 121(24):12655-65. PubMed ID: 15606291
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Percolation, phase separation, and gelation in fluids and mixtures of spheres and rods.
    Jadrich R; Schweizer KS
    J Chem Phys; 2011 Dec; 135(23):234902. PubMed ID: 22191900
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Local structure and thermodynamics of a core-softened potential fluid: theory and simulation.
    Zhou S; Jamnik A; Wolfe E; Buldyrev SV
    Chemphyschem; 2007 Jan; 8(1):138-47. PubMed ID: 17121412
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inelastic Takahashi hard-rod gas.
    Marini-Bettolo-Marconi U; Natali M; Costantini G; Cecconi F
    J Chem Phys; 2006 Jan; 124(4):044507. PubMed ID: 16460185
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.